Search Results for author: Aravind Rajeswaran

Found 40 papers, 15 papers with code

A Game Theoretic Perspective on Model-Based Reinforcement Learning

no code implementations ICML 2020 Aravind Rajeswaran, Igor Mordatch, Vikash Kumar

We point out that a large class of MBRL algorithms can be viewed as a game between two players: (1) a policy player, which attempts to maximize rewards under the learned model; (2) a model player, which attempts to fit the real-world data collected by the policy player.

Continuous Control Model-based Reinforcement Learning +2

Train Offline, Test Online: A Real Robot Learning Benchmark

1 code implementation1 Jun 2023 Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama, Aravind Rajeswaran, Jyothish Pari, Kyle Hatch, Aryan Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, Chelsea Finn, Abhinav Gupta

Three challenges limit the progress of robot learning research: robots are expensive (few labs can participate), everyone uses different robots (findings do not generalize across labs), and we lack internet-scale robotics data.

MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations

1 code implementation12 Dec 2022 Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, Aravind Rajeswaran

We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework.

Model-based Reinforcement Learning reinforcement-learning +1

CACTI: A Framework for Scalable Multi-Task Multi-Scene Visual Imitation Learning

no code implementations12 Dec 2022 Zhao Mandi, Homanga Bharadhwaj, Vincent Moens, Shuran Song, Aravind Rajeswaran, Vikash Kumar

On a real robot setup, CACTI enables efficient training of a single policy that can perform 10 manipulation tasks involving kitchen objects, and is robust to varying layouts of distractors.

Data Augmentation Image Generation +3

Real World Offline Reinforcement Learning with Realistic Data Source

no code implementations12 Oct 2022 Gaoyue Zhou, Liyiming Ke, Siddhartha Srinivasa, Abhinav Gupta, Aravind Rajeswaran, Vikash Kumar

Offline reinforcement learning (ORL) holds great promise for robot learning due to its ability to learn from arbitrary pre-generated experience.

Imitation Learning reinforcement-learning +1

R3M: A Universal Visual Representation for Robot Manipulation

1 code implementation23 Mar 2022 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, Abhinav Gupta

We study how visual representations pre-trained on diverse human video data can enable data-efficient learning of downstream robotic manipulation tasks.

Contrastive Learning Robot Manipulation

Policy Architectures for Compositional Generalization in Control

no code implementations10 Mar 2022 Allan Zhou, Vikash Kumar, Chelsea Finn, Aravind Rajeswaran

Many tasks in control, robotics, and planning can be specified using desired goal configurations for various entities in the environment.

Imitation Learning Robot Manipulation

The Unsurprising Effectiveness of Pre-Trained Vision Models for Control

no code implementations7 Mar 2022 Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, Abhinav Gupta

In this context, we revisit and study the role of pre-trained visual representations for control, and in particular representations trained on large-scale computer vision datasets.

CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery

1 code implementation1 Feb 2022 Michael Laskin, Hao liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, Pieter Abbeel

We introduce Contrastive Intrinsic Control (CIC), an algorithm for unsupervised skill discovery that maximizes the mutual information between state-transitions and latent skill vectors.

Contrastive Learning reinforcement-learning +2

Semi-supervised Offline Reinforcement Learning with Pre-trained Decision Transformers

no code implementations29 Sep 2021 Catherine Cang, Kourosh Hakhamaneshi, Ryan Rudes, Igor Mordatch, Aravind Rajeswaran, Pieter Abbeel, Michael Laskin

In this paper, we investigate how we can leverage large reward-free (i. e. task-agnostic) offline datasets of prior interactions to pre-train agents that can then be fine-tuned using a small reward-annotated dataset.

D4RL Offline RL +2

Translating Robot Skills: Learning Unsupervised Skill Correspondences Across Robots

no code implementations29 Sep 2021 Tanmay Shankar, Yixin Lin, Aravind Rajeswaran, Vikash Kumar, Stuart Anderson, Jean Oh

In this paper, we explore how we can endow robots with the ability to learn correspondences between their own skills, and those of morphologically different robots in different domains, in an entirely unsupervised manner.

Translation Unsupervised Machine Translation

Visual Adversarial Imitation Learning using Variational Models

no code implementations NeurIPS 2021 Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, Chelsea Finn

We consider a setting where an agent is provided a fixed dataset of visual demonstrations illustrating how to perform a task, and must learn to solve the task using the provided demonstrations and unsupervised environment interactions.

Imitation Learning Representation Learning

COMBO: Conservative Offline Model-Based Policy Optimization

4 code implementations NeurIPS 2021 Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, Chelsea Finn

We overcome this limitation by developing a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-action tuples generated via rollouts under the learned model.

Offline RL Uncertainty Quantification

Offline Reinforcement Learning from Images with Latent Space Models

1 code implementation21 Dec 2020 Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, Chelsea Finn

In this work, we build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.

Offline RL reinforcement-learning +1

A Game Theoretic Framework for Model Based Reinforcement Learning

no code implementations16 Apr 2020 Aravind Rajeswaran, Igor Mordatch, Vikash Kumar

Model-based reinforcement learning (MBRL) has recently gained immense interest due to its potential for sample efficiency and ability to incorporate off-policy data.

Model-based Reinforcement Learning reinforcement-learning +1

Meta-Learning with Implicit Gradients

6 code implementations NeurIPS 2019 Aravind Rajeswaran, Chelsea Finn, Sham Kakade, Sergey Levine

By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer.

Few-Shot Image Classification Few-Shot Learning

Online Meta-Learning

no code implementations ICLR Workshop LLD 2019 Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine

Meta-learning views this problem as learning a prior over model parameters that is amenable for fast adaptation on a new task, but typically assumes the set of tasks are available together as a batch.

Meta-Learning

Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control

no code implementations ICLR 2019 Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, Igor Mordatch

We study how local trajectory optimization can cope with approximation errors in the value function, and can stabilize and accelerate value function learning.

Dexterous Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost

no code implementations14 Oct 2018 Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, Vikash Kumar

Dexterous multi-fingered robotic hands can perform a wide range of manipulation skills, making them an appealing component for general-purpose robotic manipulators.

reinforcement-learning Reinforcement Learning (RL)

Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines

no code implementations ICLR 2018 Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M. Bayen, Sham Kakade, Igor Mordatch, Pieter Abbeel

To mitigate this issue, we derive a bias-free action-dependent baseline for variance reduction which fully exploits the structural form of the stochastic policy itself and does not make any additional assumptions about the MDP.

Policy Gradient Methods reinforcement-learning +1

Divide-and-Conquer Reinforcement Learning

1 code implementation ICLR 2018 Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, Sergey Levine

In this paper, we develop a novel algorithm that instead partitions the initial state space into "slices", and optimizes an ensemble of policies, each on a different slice.

Policy Gradient Methods reinforcement-learning +1

Towards Generalization and Simplicity in Continuous Control

1 code implementation NeurIPS 2017 Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, Sham Kakade

This work shows that policies with simple linear and RBF parameterizations can be trained to solve a variety of continuous control tasks, including the OpenAI gym benchmarks.

Continuous Control OpenAI Gym

EPOpt: Learning Robust Neural Network Policies Using Model Ensembles

no code implementations5 Oct 2016 Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, Sergey Levine

Sample complexity and safety are major challenges when learning policies with reinforcement learning for real-world tasks, especially when the policies are represented using rich function approximators like deep neural networks.

Domain Adaptation

Identifying Topology of Power Distribution Networks Based on Smart Meter Data

no code implementations9 Sep 2016 Jayadev P Satya, Nirav Bhatt, Ramkrishna Pasumarthy, Aravind Rajeswaran

In a power distribution network, the network topology information is essential for an efficient operation of the network.

Time Series Time Series Analysis

A Novel Approach for Phase Identification in Smart Grids Using Graph Theory and Principal Component Analysis

no code implementations19 Nov 2015 P Satya Jayadev, Aravind Rajeswaran, Nirav P Bhatt, Ramkrishna Pasumarthy

Consumers with low demand, like households, are generally supplied single-phase power by connecting their service mains to one of the phases of a distribution transformer.

Network Topology Identification using PCA and its Graph Theoretic Interpretations

no code implementations1 Jun 2015 Aravind Rajeswaran, Shankar Narasimhan

We show that identification is equivalent to learning a model $\mathbf{A_n}$ which captures the approximate linear relationships between the different variables comprising $\mathbf{X}$ (i. e. of the form $\mathbf{A_n X \approx 0}$) such that $\mathbf{A_n}$ is full rank (highest possible) and consistent with a network node-edge incidence structure.

Cannot find the paper you are looking for? You can Submit a new open access paper.