119 papers with code ·
Playing Games

We study the problem of representation learning in goal-conditioned hierarchical reinforcement learning.

CONTINUOUS CONTROL HIERARCHICAL REINFORCEMENT LEARNING REPRESENTATION LEARNING

Combining parameter noise with traditional RL methods allows to combine the best of both worlds.

Imitation Learning (IL) methods seek to match the behavior of an agent with that of an expert.

Extracting and predicting object structure and dynamics from videos without supervision is a major challenge in machine learning.

In this paper, we aim to develop a simple and scalable reinforcement learning algorithm that uses standard supervised learning methods as subroutines.

SOTA for OpenAI Gym on Ant-v2

A platform for Applied Reinforcement Learning (Applied RL)

We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain.

Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning.

In this work, we propose to apply trust region optimization to deep reinforcement learning using a recently proposed Kronecker-factored approximation to the curvature.

This paper presents an actor-critic deep reinforcement learning agent with experience replay that is stable, sample efficient, and performs remarkably well on challenging environments, including the discrete 57-game Atari domain and several continuous control problems.