Search Results for author: Maximilian Dax

Found 9 papers, 4 papers with code

Inferring Atmospheric Properties of Exoplanets with Flow Matching and Neural Importance Sampling

no code implementations13 Dec 2023 Timothy D. Gebhard, Jonas Wildberger, Maximilian Dax, Daniel Angerhausen, Sascha P. Quanz, Bernhard Schölkopf

Atmospheric retrievals (AR) characterize exoplanets by estimating atmospheric parameters from observed light spectra, typically by framing the task as a Bayesian inference problem.

Bayesian Inference

Flow Matching for Scalable Simulation-Based Inference

1 code implementation NeurIPS 2023 Maximilian Dax, Jonas Wildberger, Simon Buchholz, Stephen R. Green, Jakob H. Macke, Bernhard Schölkopf

Neural posterior estimation methods based on discrete normalizing flows have become established tools for simulation-based inference (SBI), but scaling them to high-dimensional problems can be challenging.

Adapting to noise distribution shifts in flow-based gravitational-wave inference

no code implementations16 Nov 2022 Jonas Wildberger, Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

Deep learning techniques for gravitational-wave parameter estimation have emerged as a fast alternative to standard samplers $\unicode{x2013}$ producing results of comparable accuracy.

Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference

1 code implementation11 Oct 2022 Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

This shows a median sample efficiency of $\approx 10\%$ (two orders-of-magnitude better than standard samplers) as well as a ten-fold reduction in the statistical uncertainty in the log evidence.

Group equivariant neural posterior estimation

1 code implementation ICLR 2022 Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler, Bernhard Schölkopf, Jakob H. Macke

We here describe an alternative method to incorporate equivariances under joint transformations of parameters and data.

Real-time gravitational-wave science with neural posterior estimation

1 code implementation23 Jun 2021 Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf

We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.

Cannot find the paper you are looking for? You can Submit a new open access paper.