Search Results for author: Camilo Bermudez

Found 13 papers, 4 papers with code

Contrast Phase Classification with a Generative Adversarial Network

no code implementations14 Nov 2019 Yucheng Tang, Ho Hin Lee, Yuchen Xu, Olivia Tang, Yunqiang Chen, Dashan Gao, Shizhong Han, Riqiang Gao, Camilo Bermudez, Michael R. Savona, Richard G. Abramson, Yuankai Huo, Bennett A. Landman

Dynamic contrast enhanced computed tomography (CT) is an imaging technique that provides critical information on the relationship of vascular structure and dynamics in the context of underlying anatomy.

Anatomy Classification +4

Extracting 2D weak labels from volume labels using multiple instance learning in CT hemorrhage detection

1 code implementation13 Nov 2019 Samuel W. Remedios, Zihao Wu, Camilo Bermudez, Cailey I. Kerley, Snehashis Roy, Mayur B. Patel, John A. Butman, Bennett A. Landman, Dzung L. Pham

Multiple instance learning (MIL) is a supervised learning methodology that aims to allow models to learn instance class labels from bag class labels, where a bag is defined to contain multiple instances.

Multiple Instance Learning

Deep Learning Captures More Accurate Diffusion Fiber Orientations Distributions than Constrained Spherical Deconvolution

no code implementations13 Nov 2019 Vishwesh Nath, Kurt G. Schilling, Colin B. Hansen, Prasanna Parvathaneni, Allison E. Hainline, Camilo Bermudez, Andrew J. Plassard, Vaibhav Janve, Yurui Gao, Justin A. Blaber, Iwona Stępniewska, Adam W. Anderson, Bennett A. Landman

Confocal histology provides an opportunity to establish intra-voxel fiber orientation distributions that can be used to quantitatively assess the biological relevance of diffusion weighted MRI models, e. g., constrained spherical deconvolution (CSD).

3D Whole Brain Segmentation using Spatially Localized Atlas Network Tiles

2 code implementations28 Mar 2019 Yuankai Huo, Zhoubing Xu, Yunxi Xiong, Katherine Aboud, Prasanna Parvathaneni, Shunxing Bao, Camilo Bermudez, Susan M. Resnick, Laurie E. Cutting, Bennett A. Landman

To address the first challenge, multiple spatially distributed networks were used in the SLANT method, in which each network learned contextual information for a fixed spatial location.

Brain Segmentation Segmentation

Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps

no code implementations26 Nov 2018 Camilo Bermudez, William Rodriguez, Yuankai Huo, Allison E. Hainline, Rui Li, Robert Shults, Pierre D. DHaese, Peter E. Konrad, Benoit M. Dawant, Bennett A. Landman

We show an improvement in the classification of intraoperative stimulation coordinates as a positive response in reduction of symptoms with AUC of 0. 670 compared to a baseline registration-based approach, which achieves an AUC of 0. 627 (p < 0. 01).

Anatomy BIG-bench Machine Learning +1

Splenomegaly Segmentation on Multi-modal MRI using Deep Convolutional Networks

no code implementations9 Nov 2018 Yuankai Huo, Zhoubing Xu, Shunxing Bao, Camilo Bermudez, Hyeonsoo Moon, Prasanna Parvathaneni, Tamara K. Moyo, Michael R. Savona, Albert Assad, Richard G. Abramson, Bennett A. Landman

A clinically acquired cohort containing both T1-weighted (T1w) and T2-weighted (T2w) MRI splenomegaly scans was used to train and evaluate the performance of multi-atlas segmentation (MAS), 2D DCNN networks, and a 3D DCNN network.

Segmentation Splenomegaly Segmentation On Multi-Modal Mri

Cannot find the paper you are looking for? You can Submit a new open access paper.