We then perform an analysis on the performance and failure cases of several state-of-the-art tracking methods in comparison to our Tracktor.
Ranked #1 on
Online Multi-Object Tracking
on MOT17
Human motion modelling is a classical problem at the intersection of graphics and computer vision, with applications spanning human-computer interaction, motion synthesis, and motion prediction for virtual and augmented reality.
HUMAN MOTION PREDICTION MOTION ESTIMATION MOTION PREDICTION MOTION SYNTHESIS
Motivated by the impact of large-scale datasets on ML systems we present the largest self-driving dataset for motion prediction to date, containing over 1, 000 hours of data.
AUTONOMOUS VEHICLES MOTION FORECASTING MOTION PLANNING MOTION PREDICTION
This is achieved through a deep architecture that decouples appearance and motion information.
The prediction error of GRIP is one meter shorter than existing schemes.
In this paper, we focus on obtaining 2D and 3D labels, as well as track IDs for objects on the road with the help of a novel 3D Bounding Box Annotation Toolbox (3D BAT).
Human movement is goal-directed and influenced by the spatial layout of the objects in the scene.
In this paper, we propose a simple feed-forward deep network for motion prediction, which takes into account both temporal smoothness and spatial dependencies among human body joints.
Ranked #1 on
Human Pose Forecasting
on Human3.6M
HUMAN MOTION PREDICTION HUMAN POSE FORECASTING MOTION CAPTURE MOTION PREDICTION
The backbone of MotionNet is a novel spatio-temporal pyramid network, which extracts deep spatial and temporal features in a hierarchical fashion.
Motion prediction is essential and challenging for autonomous vehicles and social robots.