Tight Regret Bounds for Noisy Optimization of a Brownian Motion

25 Jan 2020  ·  Zexin Wang, Vincent Y. F. Tan, Jonathan Scarlett ·

We consider the problem of Bayesian optimization of a one-dimensional Brownian motion in which the $T$ adaptively chosen observations are corrupted by Gaussian noise. We show that as the smallest possible expected cumulative regret and the smallest possible expected simple regret scale as $\Omega(\sigma\sqrt{T / \log (T)}) \cap \mathcal{O}(\sigma\sqrt{T} \cdot \log T)$ and $\Omega(\sigma / \sqrt{T \log (T)}) \cap \mathcal{O}(\sigma\log T / \sqrt{T})$ respectively, where $\sigma^2$ is the noise variance. Thus, our upper and lower bounds are tight up to a factor of $\mathcal{O}( (\log T)^{1.5} )$. The upper bound uses an algorithm based on confidence bounds and the Markov property of Brownian motion (among other useful properties), and the lower bound is based on a reduction to binary hypothesis testing.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here