The Mating Rituals of Deep Neural Networks: Learning Compact Feature Representations through Sexual Evolutionary Synthesis

7 Sep 2017  ·  Audrey Chung, Mohammad Javad Shafiee, Paul Fieguth, Alexander Wong ·

Evolutionary deep intelligence was recently proposed as a method for achieving highly efficient deep neural network architectures over successive generations. Drawing inspiration from nature, we propose the incorporation of sexual evolutionary synthesis. Rather than the current asexual synthesis of networks, we aim to produce more compact feature representations by synthesizing more diverse and generalizable offspring networks in subsequent generations via the combination of two parent networks. Experimental results were obtained using the MNIST and CIFAR-10 datasets, and showed improved architectural efficiency and comparable testing accuracy relative to the baseline asexual evolutionary neural networks. In particular, the network synthesized via sexual evolutionary synthesis for MNIST had approximately double the architectural efficiency (cluster efficiency of 34.29X and synaptic efficiency of 258.37X) in comparison to the network synthesized via asexual evolutionary synthesis, with both networks achieving a testing accuracy of ~97%.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here