Stochastic Data-Driven Predictive Control: Regularization, Estimation, and Constraint Tightening

5 Dec 2023  ·  Mingzhou Yin, Andrea Iannelli, Roy S. Smith ·

Data-driven predictive control methods based on the Willems' fundamental lemma have shown great success in recent years. These approaches use receding horizon predictive control with nonparametric data-driven predictors instead of model-based predictors. This study addresses three problems of applying such algorithms under unbounded stochastic uncertainties: 1) tuning-free regularizer design, 2) initial condition estimation, and 3) reliable constraint satisfaction, by using stochastic prediction error quantification. The regularizer is designed by leveraging the expected output cost. An initial condition estimator is proposed by filtering the measurements with the one-step-ahead stochastic data-driven prediction. A novel constraint-tightening method, using second-order cone constraints, is presented to ensure high-probability chance constraint satisfaction. Numerical results demonstrate that the proposed methods lead to satisfactory control performance in terms of both control cost and constraint satisfaction, with significantly improved initial condition estimation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here