Space-Time Localization and Mapping

ICCV 2017  ·  Minhaeng Lee, Charless C. Fowlkes ·

This paper addresses the problem of building a spatio-temporal model of the world from a stream of time-stamped data. Unlike traditional models for simultaneous localization and mapping (SLAM) and structure-from-motion (SfM) which focus on recovering a single rigid 3D model, we tackle the problem of mapping scenes in which dynamic components appear, move and disappear independently of each other over time. We introduce a simple generative probabilistic model of 4D structure which specifies location, spatial and temporal extent of rigid surface patches by local Gaussian mixtures. We fit this model to a time-stamped stream of input data using expectation-maximization to estimate the model structure parameters (mapping) and the alignment of the input data to the model (localization). By explicitly representing the temporal extent and observability of surfaces in a scene, our method yields superior localization and reconstruction relative to baselines that assume a static 3D scene. We carry out experiments on both synthetic RGB-D data streams as well as challenging real-world datasets, tracking scene dynamics in a human workspace over the course of several weeks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here