Sharing to learn and learning to share -- Fitting together Meta-Learning, Multi-Task Learning, and Transfer Learning: A meta review

23 Nov 2021  ·  Richa Upadhyay, Ronald Phlypo, Rajkumar Saini, Marcus Liwicki ·

Integrating knowledge across different domains is an essential feature of human learning. Learning paradigms such as transfer learning, meta learning, and multi-task learning reflect the human learning process by exploiting the prior knowledge for new tasks, encouraging faster learning and good generalization for new tasks. This article gives a detailed view of these learning paradigms and their comparative analysis. The weakness of one learning algorithm turns out to be a strength of another, and thus merging them is a prevalent trait in the literature. There are numerous research papers that focus on each of these learning paradigms separately and provide a comprehensive overview of them. However, this article provides a review of research studies that combine (two of) these learning algorithms. This survey describes how these techniques are combined to solve problems in many different fields of study, including computer vision, natural language processing, hyperspectral imaging, and many more, in supervised setting only. As a result, the global generic learning network an amalgamation of meta learning, transfer learning, and multi-task learning is introduced here, along with some open research questions and future research directions in the multi-task setting.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here