Scene Invariant Crowd Segmentation and Counting Using Scale-Normalized Histogram of Moving Gradients (HoMG)

1 Feb 2016  ·  Parthipan Siva, Mohammad Javad Shafiee, Mike Jamieson, Alexander Wong ·

The problem of automated crowd segmentation and counting has garnered significant interest in the field of video surveillance. This paper proposes a novel scene invariant crowd segmentation and counting algorithm designed with high accuracy yet low computational complexity in mind, which is key for widespread industrial adoption. A novel low-complexity, scale-normalized feature called Histogram of Moving Gradients (HoMG) is introduced for highly effective spatiotemporal representation of individuals and crowds within a video. Real-time crowd segmentation is achieved via boosted cascade of weak classifiers based on sliding-window HoMG features, while linear SVM regression of crowd-region HoMG features is employed for real-time crowd counting. Experimental results using multi-camera crowd datasets show that the proposed algorithm significantly outperform state-of-the-art crowd counting algorithms, as well as achieve very promising crowd segmentation results, thus demonstrating the efficacy of the proposed method for highly-accurate, real-time video-driven crowd analysis.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods