Research on Multilingual Natural Scene Text Detection Algorithm

18 Dec 2023  ·  Tao Wang ·

Natural scene text detection is a significant challenge in computer vision, with tremendous potential applications in multilingual, diverse, and complex text scenarios. We propose a multilingual text detection model to address the issues of low accuracy and high difficulty in detecting multilingual text in natural scenes. In response to the challenges posed by multilingual text images with multiple character sets and various font styles, we introduce the SFM Swin Transformer feature extraction network to enhance the model's robustness in detecting characters and fonts across different languages. Dealing with the considerable variation in text scales and complex arrangements in natural scene text images, we present the AS-HRFPN feature fusion network by incorporating an Adaptive Spatial Feature Fusion module and a Spatial Pyramid Pooling module. The feature fusion network improvements enhance the model's ability to detect text sizes and orientations. Addressing diverse backgrounds and font variations in multilingual scene text images is a challenge for existing methods. Limited local receptive fields hinder detection performance. To overcome this, we propose a Global Semantic Segmentation Branch, extracting and preserving global features for more effective text detection, aligning with the need for comprehensive information. In this study, we collected and built a real-world multilingual natural scene text image dataset and conducted comprehensive experiments and analyses. The experimental results demonstrate that the proposed algorithm achieves an F-measure of 85.02\%, which is 4.71\% higher than the baseline model. We also conducted extensive cross-dataset validation on MSRA-TD500, ICDAR2017MLT, and ICDAR2015 datasets to verify the generality of our approach. The code and dataset can be found at https://github.com/wangmelon/CEMLT.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods