Planning Automated Driving with Accident Experience Referencing and Common-sense Inferencing

26 Jan 2023  ·  Shaobo Qiu, Ji Li, Guoxi Chen, Hong Wang, Boqi Li ·

Although a typical autopilot system far surpasses humans in term of sensing accuracy, performance stability and response agility, such a system is still far behind humans in the wisdom of understanding an unfamiliar environment with creativity, adaptivity and resiliency. Current AD brains are basically expert systems featuring logical computations, which resemble the thinking flow of a left brain working at tactical level. A right brain is needed to upgrade the safety of automated driving vehicle onto next generation by making intuitive strategical judgements that can supervise the tactical action planning. In this work, we present the concept of an Automated Driving Strategical Brain (ADSB): a framework of a scene perception and scene safety evaluation system that works at a higher abstraction level, incorporating experience referencing, common-sense inferring and goal-and-value judging capabilities, to provide a contextual perspective for decision making within automated driving planning. The ADSB brain architecture is made up of the Experience Referencing Engine (ERE), the Common-sense Referencing Engine (CIE) and the Goal and Value Keeper (GVK). 1,614,748 cases from FARS/CRSS database of NHTSA in the period 1975 to 2018 are used for the training of ERE model. The kernel of CIE is a trained model, COMET-BART by ATOMIC, which can be used to provide directional advice when tactical-level environmental perception conclusions are ambiguous; it can also use future scenario models to remind tactical-level decision systems to plan ahead of a perceived hazard scene. GVK can take in any additional expert-hand-written rules that are of qualitative nature. Moreover, we believe that with good scalability, the ADSB approach provides a potential solution to the problem of long-tail corner cases encountered in the validation of a rule-based planning algorithm.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here