On Low-Rank Hankel Matrix Denoising

14 Dec 2020  ·  Mingzhou Yin, Roy S. Smith ·

The low-complexity assumption in linear systems can often be expressed as rank deficiency in data matrices with generalized Hankel structure. This makes it possible to denoise the data by estimating the underlying structured low-rank matrix. However, standard low-rank approximation approaches are not guaranteed to perform well in estimating the noise-free matrix. In this paper, recent results in matrix denoising by singular value shrinkage are reviewed. A novel approach is proposed to solve the low-rank Hankel matrix denoising problem by using an iterative algorithm in structured low-rank approximation modified with data-driven singular value shrinkage. It is shown numerically in both the input-output trajectory denoising and the impulse response denoising problems, that the proposed method performs the best in terms of estimating the noise-free matrix among existing algorithms of low-rank matrix approximation and denoising.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here