Normality-Guided Distributional Reinforcement Learning for Continuous Control

28 Aug 2022  ·  Ju-Seung Byun, Andrew Perrault ·

Learning a predictive model of the mean return, or value function, plays a critical role in many reinforcement learning algorithms. Distributional reinforcement learning (DRL) has been shown to improve performance by modeling the value distribution, not just the mean. We study the value distribution in several continuous control tasks and find that the learned value distribution is empirical quite close to normal. We design a method that exploits this property, employ variances predicted from a variance network, along with returns, to analytically compute target quantile bars representing a normal for our distributional value function. In addition, we propose a policy update strategy based on the correctness as measured by structural characteristics of the value distribution not present in the standard value function. The approach we outline is compatible with many DRL structures. We use two representative on-policy algorithms, PPO and TRPO, as testbeds. Our method yields statistically significant improvements in 10 out of 16 continuous task settings, while utilizing a reduced number of weights and achieving faster training time compared to an ensemble-based method for quantifying value distribution uncertainty.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods