MOSformer: Momentum encoder-based inter-slice fusion transformer for medical image segmentation

Medical image segmentation takes an important position in various clinical applications. Deep learning has emerged as the predominant solution for automated segmentation of volumetric medical images. 2.5D-based segmentation models bridge computational efficiency of 2D-based models and spatial perception capabilities of 3D-based models. However, prevailing 2.5D-based models often treat each slice equally, failing to effectively learn and exploit inter-slice information, resulting in suboptimal segmentation performances. In this paper, a novel Momentum encoder-based inter-slice fusion transformer (MOSformer) is proposed to overcome this issue by leveraging inter-slice information at multi-scale feature maps extracted by different encoders. Specifically, dual encoders are employed to enhance feature distinguishability among different slices. One of the encoders is moving-averaged to maintain the consistency of slice representations. Moreover, an IF-Swin transformer module is developed to fuse inter-slice multi-scale features. The MOSformer is evaluated on three benchmark datasets (Synapse, ACDC, and AMOS), establishing a new state-of-the-art with 85.63%, 92.19%, and 85.43% of DSC, respectively. These promising results indicate its competitiveness in medical image segmentation. Codes and models of MOSformer will be made publicly available upon acceptance.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here