Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems

21 Dec 2021  ·  Andrea Stocco, Brian Pulfer, Paolo Tonella ·

Safe deployment of self-driving cars (SDC) necessitates thorough simulated and in-field testing. Most testing techniques consider virtualized SDCs within a simulation environment, whereas less effort has been directed towards assessing whether such techniques transfer to and are effective with a physical real-world vehicle. In this paper, we shed light on the problem of generalizing testing results obtained in a driving simulator to a physical platform and provide a characterization and quantification of the sim2real gap affecting SDC testing. In our empirical study, we compare SDC testing when deployed on a physical small-scale vehicle vs its digital twin. Due to the unavailability of driving quality indicators from the physical platform, we use neural rendering to estimate them through visual odometry, hence allowing full comparability with the digital twin. Then, we investigate the transferability of behavior and failure exposure between virtual and real-world environments, targeting both unintended abnormal test data and intended adversarial examples. Our study shows that, despite the usage of a faithful digital twin, there are still critical shortcomings that contribute to the reality gap between the virtual and physical world, threatening existing testing solutions that only consider virtual SDCs. On the positive side, our results present the test configurations for which physical testing can be avoided, either because their outcome does transfer between virtual and physical environments, or because the uncertainty profiles in the simulator can help predict their outcome in the real world.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here