Paper

Maximum Causal Entropy Specification Inference from Demonstrations

In many settings (e.g., robotics) demonstrations provide a natural way to specify tasks; however, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the tasks, such as rewards or policies, can be safely composed and/or do not explicitly capture history dependencies. Motivated by this deficit, recent works have proposed learning Boolean task specifications, a class of Boolean non-Markovian rewards which admit well-defined composition and explicitly handle historical dependencies. This work continues this line of research by adapting maximum causal entropy inverse reinforcement learning to estimate the posteriori probability of a specification given a multi-set of demonstrations. The key algorithmic insight is to leverage the extensive literature and tooling on reduced ordered binary decision diagrams to efficiently encode a time unrolled Markov Decision Process. This enables transforming a naive exponential time algorithm into a polynomial time algorithm.

Results in Papers With Code
(↓ scroll down to see all results)