Maximum Causal Entropy Specification Inference from Demonstrations

26 Jul 2019  ·  Marcell Vazquez-Chanlatte, Sanjit A. Seshia ·

In many settings (e.g., robotics) demonstrations provide a natural way to specify tasks; however, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the tasks, such as rewards or policies, can be safely composed and/or do not explicitly capture history dependencies. Motivated by this deficit, recent works have proposed learning Boolean task specifications, a class of Boolean non-Markovian rewards which admit well-defined composition and explicitly handle historical dependencies. This work continues this line of research by adapting maximum causal entropy inverse reinforcement learning to estimate the posteriori probability of a specification given a multi-set of demonstrations. The key algorithmic insight is to leverage the extensive literature and tooling on reduced ordered binary decision diagrams to efficiently encode a time unrolled Markov Decision Process. This enables transforming a naive exponential time algorithm into a polynomial time algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here