Learning Reinforced Attentional Representation for End-to-End Visual Tracking

27 Aug 2019  ·  Peng Gao, Qiquan Zhang, Fei Wang, Liyi Xiao, Hamido Fujita, Yan Zhang ·

Although numerous recent tracking approaches have made tremendous advances in the last decade, achieving high-performance visual tracking remains a challenge. In this paper, we propose an end-to-end network model to learn reinforced attentional representation for accurate target object discrimination and localization. We utilize a novel hierarchical attentional module with long short-term memory and multi-layer perceptrons to leverage both inter- and intra-frame attention to effectively facilitate visual pattern emphasis. Moreover, we incorporate a contextual attentional correlation filter into the backbone network to make our model trainable in an end-to-end fashion. Our proposed approach not only takes full advantage of informative geometries and semantics but also updates correlation filters online without fine-tuning the backbone network to enable the adaptation of variations in the target object's appearance. Extensive experiments conducted on several popular benchmark datasets demonstrate that our proposed approach is effective and computationally efficient.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here