Learning Progressive Joint Propagation for Human Motion Prediction

Despite the great progress in human motion prediction, it remains a challenging task due to the complicated structural dynamics of human behaviors. In this paper, we address this problem in three aspects. First, to capture the long-range spatial correlations and temporal dependencies, we apply a transformer-based architecture with the global attention mechanism. Specifically, we feed the network with the sequential joints encoded with the temporal information for spatial and temporal explorations. Second, to further exploit the inherent kinematic chains for better 3D structures, we apply a progressive-decoding strategy, which performs in a central-to-peripheral extension according to the structural connectivity. Last, in order to incorporate a general motion space for high-quality prediction, we build a memory-based dictionary, which aims to preserve the global motion patterns in training data to guide the predictions. We evaluate the proposed method on two challenging benchmark datasets (Human3.6M and CMU-Mocap). Experimental results show our superior performance compared with the state-of-the-art approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here