KEEC: Embed to Control on An Equivariant Geometry

4 Dec 2023  ·  Xiaoyuan Cheng, Yiming Yang, Wei Jiang, Yukun Hu ·

This paper investigates how representation learning can enable optimal control in unknown and complex dynamics, such as chaotic and non-linear systems, without relying on prior domain knowledge of the dynamics. The core idea is to establish an equivariant geometry that is diffeomorphic to the manifold defined by a dynamical system and to perform optimal control within this corresponding geometry, which is a non-trivial task. To address this challenge, Koopman Embed to Equivariant Control (KEEC) is proposed for model learning and control. Inspired by Lie theory, KEEC begins by learning a non-linear dynamical system defined on a manifold and embedding trajectories into a Lie group. Subsequently, KEEC formulates an equivariant value function equation in reinforcement learning on the equivariant geometry, ensuring an invariant effect as the value function on the original manifold. By deriving analytical-form optimal actions on the equivariant value function, KEEC theoretically achieves quadratic convergence for the optimal equivariant value function by leveraging the differential information on the equivariant geometry. The effectiveness of KEEC is demonstrated in challenging dynamical systems, including chaotic ones like Lorenz-63. Notably, our results show that isometric functions, which maintain the compactness and completeness of geometry while preserving metric and differential information, consistently outperform loss functions lacking these characteristics.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here