Jointly Learned Symbol Detection and Signal Reflection in RIS-Aided Multi-user MIMO Systems

Reconfigurable Intelligent Surfaces (RISs) are regarded as a key technology for future wireless communications, enabling programmable radio propagation environments. However, the passive reflecting feature of RISs induces notable challenges on channel estimation, making coherent symbol detection a challenging task. In this paper, we consider the uplink of RIS-aided multi-user Multiple-Input Multiple-Output (MIMO) systems and propose a Machine Learning (ML) approach to jointly design the multi-antenna receiver and configure the RIS reflection coefficients, which does not require explicit full knowledge of the channel input-output relationship. Our approach devises a ML-based receiver, while the configurations of the RIS reflection patterns affecting the underlying propagation channel are treated as hyperparameters. Based on this system design formulation, we propose a Bayesian ML framework for optimizing the RIS hyperparameters, according to which the transmitted pilots are directly used to jointly tune the RIS and the multi-antenna receiver. Our simulation results demonstrate the capability of the proposed approach to provide reliable communications in non-linear channel conditions corrupted by Gaussian noise.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here