epBRM: Improving a Quality of 3D Object Detection using End Point Box Regression Module

27 Sep 2019  ·  Kiwoo Shin, Masayoshi Tomizuka ·

We present an endpoint box regression module(epBRM), which is designed for predicting precise 3D bounding boxes using raw LiDAR 3D point clouds. The proposed epBRM is built with sequence of small networks and is computationally lightweight. Our approach can improve a 3D object detection performance by predicting more precise 3D bounding box coordinates. The proposed approach requires 40 minutes of training to improve the detection performance. Moreover, epBRM imposes less than 12ms to network inference time for up-to 20 objects. The proposed approach utilizes a spatial transformation mechanism to simplify the box regression task. Adopting spatial transformation mechanism into epBRM makes it possible to improve the quality of detection with a small sized network. We conduct in-depth analysis of the effect of various spatial transformation mechanisms applied on raw LiDAR 3D point clouds. We also evaluate the proposed epBRM by applying it to several state-of-the-art 3D object detection systems. We evaluate our approach on KITTI dataset, a standard 3D object detection benchmark for autonomous vehicles. The proposed epBRM enhances the overlaps between ground truth bounding boxes and detected bounding boxes, and improves 3D object detection. Our proposed method evaluated in KITTI test server outperforms current state-of-the-art approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here