Hierarchical Policy Blending As Optimal Transport

4 Dec 2022  ·  An T. Le, Kay Hansel, Jan Peters, Georgia Chalvatzaki ·

We present hierarchical policy blending as optimal transport (HiPBOT). HiPBOT hierarchically adjusts the weights of low-level reactive expert policies of different agents by adding a look-ahead planning layer on the parameter space. The high-level planner renders policy blending as unbalanced optimal transport consolidating the scaling of the underlying Riemannian motion policies. As a result, HiPBOT effectively decides the priorities between expert policies and agents, ensuring the task's success and guaranteeing safety. Experimental results in several application scenarios, from low-dimensional navigation to high-dimensional whole-body control, show the efficacy and efficiency of HiPBOT. Our method outperforms state-of-the-art baselines -- either adopting probabilistic inference or defining a tree structure of experts -- paving the way for new applications of optimal transport to robot control. More material at https://sites.google.com/view/hipobot

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here