Trust Region-Based Safe Distributional Reinforcement Learning for Multiple Constraints

NeurIPS 2023  ·  Dohyeong Kim, Kyungjae Lee, Songhwai Oh ·

In safety-critical robotic tasks, potential failures must be reduced, and multiple constraints must be met, such as avoiding collisions, limiting energy consumption, and maintaining balance. Thus, applying safe reinforcement learning (RL) in such robotic tasks requires to handle multiple constraints and use risk-averse constraints rather than risk-neutral constraints. To this end, we propose a trust region-based safe RL algorithm for multiple constraints called a safe distributional actor-critic (SDAC). Our main contributions are as follows: 1) introducing a gradient integration method to manage infeasibility issues in multi-constrained problems, ensuring theoretical convergence, and 2) developing a TD($\lambda$) target distribution to estimate risk-averse constraints with low biases. We evaluate SDAC through extensive experiments involving multi- and single-constrained robotic tasks. While maintaining high scores, SDAC shows 1.93 times fewer steps to satisfy all constraints in multi-constrained tasks and 1.78 times fewer constraint violations in single-constrained tasks compared to safe RL baselines. Code is available at: https://github.com/rllab-snu/Safe-Distributional-Actor-Critic.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here