DER-GCN: Dialogue and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Dialogue Emotion Recognition

17 Dec 2023  ·  Wei Ai, Yuntao Shou, Tao Meng, Keqin Li ·

With the continuous development of deep learning (DL), the task of multimodal dialogue emotion recognition (MDER) has recently received extensive research attention, which is also an essential branch of DL. The MDER aims to identify the emotional information contained in different modalities, e.g., text, video, and audio, in different dialogue scenes. However, existing research has focused on modeling contextual semantic information and dialogue relations between speakers while ignoring the impact of event relations on emotion. To tackle the above issues, we propose a novel Dialogue and Event Relation-Aware Graph Convolutional Neural Network for Multimodal Emotion Recognition (DER-GCN) method. It models dialogue relations between speakers and captures latent event relations information. Specifically, we construct a weighted multi-relationship graph to simultaneously capture the dependencies between speakers and event relations in a dialogue. Moreover, we also introduce a Self-Supervised Masked Graph Autoencoder (SMGAE) to improve the fusion representation ability of features and structures. Next, we design a new Multiple Information Transformer (MIT) to capture the correlation between different relations, which can provide a better fuse of the multivariate information between relations. Finally, we propose a loss optimization strategy based on contrastive learning to enhance the representation learning ability of minority class features. We conduct extensive experiments on the IEMOCAP and MELD benchmark datasets, which verify the effectiveness of the DER-GCN model. The results demonstrate that our model significantly improves both the average accuracy and the f1 value of emotion recognition.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods