Deep Expectation-Maximization in Hidden Markov Models via Simultaneous Perturbation Stochastic Approximation

25 Sep 2019  ·  Chong Li, Dan Shen, C.J. Richard Shi, Hongxia Yang ·

We propose a novel method to estimate the parameters of a collection of Hidden Markov Models (HMM), each of which corresponds to a set of known features. The observation sequence of an individual HMM is noisy and/or insufficient, making parameter estimation solely based on its corresponding observation sequence a challenging problem. The key idea is to combine the classical Expectation-Maximization (EM) algorithm with a neural network, while these two are jointly trained in an end-to-end fashion, mapping the HMM features to its parameters and effectively fusing the information across different HMMs. In order to address the numerical difficulty in computing the gradient of the EM iteration, simultaneous perturbation stochastic approximation (SPSA) is employed to approximate the gradient. We also provide a rigorous proof that the approximated gradient due to SPSA converges to the true gradient almost surely. The efficacy of the proposed method is demonstrated on synthetic data as well as a real-world e-Commerce dataset.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here