Context-PIPs: Persistent Independent Particles Demands Spatial Context Features

3 Jun 2023  ·  Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yitong Dong, Yijin Li, Hongsheng Li ·

We tackle the problem of Persistent Independent Particles (PIPs), also called Tracking Any Point (TAP), in videos, which specifically aims at estimating persistent long-term trajectories of query points in videos. Previous methods attempted to estimate these trajectories independently to incorporate longer image sequences, therefore, ignoring the potential benefits of incorporating spatial context features. We argue that independent video point tracking also demands spatial context features. To this end, we propose a novel framework Context-PIPs, which effectively improves point trajectory accuracy by aggregating spatial context features in videos. Context-PIPs contains two main modules: 1) a SOurse Feature Enhancement (SOFE) module, and 2) a TArget Feature Aggregation (TAFA) module. Context-PIPs significantly improves PIPs all-sided, reducing 11.4% Average Trajectory Error of Occluded Points (ATE-Occ) on CroHD and increasing 11.8% Average Percentage of Correct Keypoint (A-PCK) on TAP-Vid-Kinectics. Demos are available at https://wkbian.github.io/Projects/Context-PIPs/.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here