Collaborative learning model predictive control for repetitive tasks

29 Nov 2022  ·  Paula Chanfreut, José María Maestre, Eduardo F. Camacho, Francesco Borrelli ·

This paper presents a cloud-based learning model predictive controller that integrates three interacting components: a set of agents, which must learn to perform a finite set of tasks with the minimum possible local cost; a coordinator, which assigns the tasks to the agents; and the cloud, which stores data to facilitate the agents' learning. The tasks consist in traveling repeatedly between a set of target states while satisfying input and state constraints. In turn, the state constraints may change in time for each of the possible tasks. To deal with it, different modes of operation, which establish different restrictions, are defined. The agents' inputs are found by solving local model predictive control (MPC) problems where the terminal set and cost are defined from previous trajectories. The data collected by each agent is uploaded to the cloud and made accessible to all their peers. Likewise, similarity between tasks is exploited to accelerate the learning process. The applicability of the proposed approach is illustrated by simulation results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here