Bias-Scalable Near-Memory CMOS Analog Processor for Machine Learning

10 Feb 2022  ·  Pratik Kumar, Ankita Nandi, Shantanu Chakrabartty, Chetan Singh Thakur ·

Bias-scalable analog computing is attractive for implementing machine learning (ML) processors with distinct power-performance specifications. For instance, ML implementations for server workloads are focused on higher computational throughput for faster training, whereas ML implementations for edge devices are focused on energy-efficient inference. In this paper, we demonstrate the implementation of bias-scalable approximate analog computing circuits using the generalization of the margin-propagation principle called shape-based analog computing (S-AC). The resulting S-AC core integrates several near-memory compute elements, which include: (a) non-linear activation functions; (b) inner-product compute circuits; and (c) a mixed-signal compressive memory, all of which can be scaled for performance or power while preserving its functionality. Using measured results from prototypes fabricated in a 180nm CMOS process, we demonstrate that the performance of computing modules remains robust to transistor biasing and variations in temperature. In this paper, we also demonstrate the effect of bias-scalability and computational accuracy on a simple ML regression task.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here