Bridging The Gaps Between Token Pruning and Full Pre-training via Masked Fine-tuning

26 Oct 2023  ·  Fengyuan Shi, LiMin Wang ·

Despite the success of transformers on various computer vision tasks, they suffer from excessive memory and computational cost. Some works present dynamic vision transformers to accelerate inference by pruning redundant tokens. A key to improving token pruning is using well-trained models as initialization for faster convergence and better performance. However, current base models usually adopt full image training, i.e., using full images as inputs and keeping the whole feature maps through the forward process, which causes inconsistencies with dynamic models that gradually reduce tokens, including calculation pattern, information amount and token selection strategy inconsistencies. Inspired by MAE which performs masking and reconstruction self-supervised task, we devise masked fine-tuning to bridge the gaps between pre-trained base models used for initialization and token pruning based dynamic vision transformers, by masking image patches and predicting the image class label based on left unmasked patches. Extensive experiments on ImageNet demonstrate that base models via masked fine-tuning gain strong occlusion robustness and ability against information loss. With this better initialization, Dynamic ViT achieves higher accuracies, especially under large token pruning ratios (e.g., 81.9% vs. 81.3%, and 62.3% vs. 58.9% for DeiT based Dynamic ViT/0.8 and Dynamic ViT/0.3). Moreover, we apply our method into different token pruning based dynamic vision transformers, different pre-trained models and randomly initialized models to demonstrate the generalization ability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods