BioGAP: a 10-Core FP-capable Ultra-Low Power IoT Processor, with Medical-Grade AFE and BLE Connectivity for Wearable Biosignal Processing

Wearable biosignal processing applications are driving significant progress toward miniaturized, energy-efficient Internet-of-Things solutions for both clinical and consumer applications. However, scaling toward high-density multi-channel front-ends is only feasible by performing data processing and machine Learning (ML) near-sensor through energy-efficient edge processing. To tackle these challenges, we introduce BioGAP, a novel, compact, modular, and lightweight (6g) medical-grade biosignal acquisition and processing platform powered by GAP9, a ten-core ultra-low-power SoC designed for efficient multi-precision (from FP to aggressively quantized integer) processing, as required for advanced ML and DSP. BioGAPs form factor is 16x21x14 mm$^3$ and comprises two stacked PCBs: a baseboard integrating the GAP9 SoC, a wireless Bluetooth Low Energy (BLE) capable SoC, a power management circuit, and an accelerometer; and a shield including an analog front-end (AFE) for ExG acquisition. Finally, the system also includes a flexibly placeable photoplethysmogram (PPG) PCB with a size of 9x7x3 mm$^3$ and a rechargeable battery ($\phi$ 12x5 mm$^2$). We demonstrate BioGAP on a Steady State Visually Evoked Potential (SSVEP)-based Brain-Computer Interface (BCI) application. We achieve 3.6 uJ/sample in streaming and 2.2 uJ/sample in onboard processing mode, thanks to an efficiency on the FFT computation task of 16.7 Mflops/s/mW with wireless bandwidth reduction of 97%, within a power budget of just 18.2 mW allowing for an operation time of 15 h.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods