Bayesian Optimization with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics

14 Feb 2016  ·  Felix Berkenkamp, Andreas Krause, Angela P. Schoellig ·

Robotic algorithms typically depend on various parameters, the choice of which significantly affects the robot's performance. While an initial guess for the parameters may be obtained from dynamic models of the robot, parameters are usually tuned manually on the real system to achieve the best performance. Optimization algorithms, such as Bayesian optimization, have been used to automate this process. However, these methods may evaluate unsafe parameters during the optimization process that lead to safety-critical system failures. Recently, a safe Bayesian optimization algorithm, called SafeOpt, has been developed, which guarantees that the performance of the system never falls below a critical value; that is, safety is defined based on the performance function. However, coupling performance and safety is often not desirable in robotics. For example, high-gain controllers might achieve low average tracking error (performance), but can overshoot and violate input constraints. In this paper, we present a generalized algorithm that allows for multiple safety constraints separate from the objective. Given an initial set of safe parameters, the algorithm maximizes performance but only evaluates parameters that satisfy safety for all constraints with high probability. To this end, it carefully explores the parameter space by exploiting regularity assumptions in terms of a Gaussian process prior. Moreover, we show how context variables can be used to safely transfer knowledge to new situations and tasks. We provide a theoretical analysis and demonstrate that the proposed algorithm enables fast, automatic, and safe optimization of tuning parameters in experiments on a quadrotor vehicle.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods