CobBO: Coordinate Backoff Bayesian Optimization
Jian Tan
•
Niv Nayman
•
Mengchang Wang
•
Rong Jin
|
2021-01-13
|
Automated feature selection for data-driven models of rapid battery capacity fade and end of life
Samuel Greenbank
•
David A. Howey
|
2021-01-12
|
Regret Analysis of Distributed Gaussian Process Estimation and Coverage
Lai Wei
•
Andrew McDonald
•
Vaibhav Srivastava
|
2021-01-12
|
An asymptotic formula for the variance of the number of zeroes of a stationary Gaussian process
Eran Assaf
•
Jeremiah Buckley
•
Naomi Feldheim
|
2021-01-11
|
Fast calculation of Gaussian Process multiple-fold cross-validation residuals and their covariances
David Ginsbourger
•
Cedric Schärer
|
2021-01-08
|
Retrieval of Coloured Dissolved Organic Matter with Machine Learning Methods
Ana B. Ruescas
•
Martin Hieronymi
•
Sampsa Koponen
•
Kari Kallio
•
Gustau Camps-Valls
|
2021-01-07
|
Modeling massive multivariate spatial data with the basis graphical lasso
Mitchell Krock
•
William Kleiber
•
Dorit Hammerling
•
Stephen Becker
|
2021-01-07
|
Infinitely Wide Tensor Networks as Gaussian Process
Erdong Guo
•
David Draper
|
2021-01-07
|
Multi-instrumental view of magnetic fields and activity of $ε$ Eridani with SPIRou, NARVAL, and TESS
P. Petit
•
C. P. Folsom
•
J. -F. Donati
•
L. Yu
•
J. -D. do Nascimento Jr.
•
S. Jeffers
•
S. C. Marsden
•
J. Morin
•
A. A. Vidotto
|
2021-01-07
|
Gaussian Function On Response Surface Estimation
Mohammadhossein Toutiaee
•
John Miller
|
2021-01-04
|
Gauss-Legendre Features for Gaussian Process Regression
Paz Fink Shustin
•
Haim Avron
|
2021-01-04
|
Phase Transitions in Recovery of Structured Signals from Corrupted Measurements
Zhongxing Sun
•
Wei Cui
•
Yulong Liu
|
2021-01-03
|
Meta-Learning Conjugate Priors for Few-Shot Bayesian Optimization
Ruduan Plug
|
2021-01-03
|
Fixing Asymptotic Uncertainty of Bayesian Neural Networks with Infinite ReLU Features
Anonymous
|
2021-01-01
|
Few-Shot Bayesian Optimization with Deep Kernel Surrogates
Anonymous
|
2021-01-01
|
Guiding Neural Network Initialization via Marginal Likelihood Maximization
Anonymous
|
2021-01-01
|
Learning Collision-free Latent Space for Bayesian Optimization
Anonymous
|
2021-01-01
|
Physics Informed Deep Kernel Learning
Anonymous
|
2021-01-01
|
Learning What Not to Model: Gaussian Process Regression with Negative Constraints
Anonymous
|
2021-01-01
|
Large-width functional asymptotics for deep Gaussian neural networks
Anonymous
|
2021-01-01
|
Interpretable Neural Architecture Search via Bayesian Optimisation with Weisfeiler-Lehman Kernels
Anonymous
|
2021-01-01
|
Anomaly detection and regime searching in fitness-tracker data
Anonymous
|
2021-01-01
|
Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit
Anonymous
|
2021-01-01
|
Are wider nets better given the same number of parameters?
Anonymous
|
2021-01-01
|
A Temporal Kernel Approach for Deep Learning with Continuous-time Information
Anonymous
|
2021-01-01
|
Optimal Designs of Gaussian Processes with Budgets for Hyperparameter Optimization
Anonymous
|
2021-01-01
|
Sparse Gaussian Process Variational Autoencoders
Anonymous
|
2021-01-01
|
Variational Deterministic Uncertainty Quantification
Anonymous
|
2021-01-01
|
Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-ion Batteries
Kailong Liu
•
Xiaosong Hu
•
Zhongbao Wei
•
Yi Li
•
Yan Jiang
|
2020-12-31
|
Particle Swarm Based Hyper-Parameter Optimization for Machine Learned Interatomic Potentials
Suresh Kondati Natarajan
•
Miguel A. Caro
|
2020-12-31
|
Social media data reveals signal for public consumer perceptions
Neeti Pokhriyal
•
Abenezer Dara
•
Benjamin Valentino
•
Soroush Vosoughi
|
2020-12-26
|
Kryging: Geostatistical analysis of large-scale datasets using Krylov subspace methods
Suman Majumder
•
Yawen Guan
•
Brian J. Reich
•
Arvind K. Saibaba
|
2020-12-24
|
Estimation of Driver's Gaze Region from Head Position and Orientation using Probabilistic Confidence Regions
Sumit Jha
•
Carlos Busso
|
2020-12-23
|
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
Jialei Chen
•
Zhehui Chen
•
Chuck Zhang
•
C. F. Jeff Wu
|
2020-12-22
|
Gaussian Process Regression constrained by Boundary Value Problems
Mamikon Gulian
•
Ari Frankel
•
Laura Swiler
|
2020-12-22
|
Having a Ball: evaluating scoring streaks and game excitement using in-match trend estimation
Claus Thorn Ekstrøm
•
Andreas Kryger Jensen
|
2020-12-22
|
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Anh Tong
•
Toan Tran
•
Hung Bui
•
Jaesik Choi
|
2020-12-21
|
A Bayesian methodology for localising acoustic emission sources in complex structures
Matthew R. Jones
•
Tim J. Rogers
•
Keith Worden
•
Elizabeth J. Cross
|
2020-12-21
|
Parameter Identification for Digital Fabrication: A Gaussian Process Learning Approach
Yvonne R. Stürz
•
Mohammad Khosravi
•
Roy S. Smith
|
2020-12-20
|
Guiding Neural Network Initialization via Marginal Likelihood Maximization
Anthony S. Tai
•
Chunfeng Huang
|
2020-12-17
|
Detecting Botnet Attacks in IoT Environments: An Optimized Machine Learning Approach
MohammadNoor Injadat
•
Abdallah Moubayed
•
Abdallah Shami
|
2020-12-16
|
Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes
Anna Mateo-Sanchis
•
Jordi Munoz-Mari
•
Manuel Campos-Taberner
•
Javier Garcia-Haro
•
Gustau Camps-Valls
|
2020-12-11
|
Exact Bayesian inference for level-set Cox processes
Flavio B. Gonçalves
•
Barbara C. C. Dias
|
2020-12-10
|
On the Environmental Variability of Offshore Wind Power
Behzad Golparvar
•
Petros Papadopoulos
•
Ahmed Aziz Ezzat
•
Ruo-Qian Wang
|
2020-12-08
|
Retrieval of Case 2 Water Quality Parameters with Machine Learning
Ana B. Ruescas
•
Gonzalo Mateo-Garcia
•
Gustau Camps-Valls
•
Martin Hieronymi
|
2020-12-08
|
Retrieval of aboveground crop nitrogen content with a hybrid machine learning method
Katja Berger
•
Jochem Verrelst
•
Jean-Baptiste Féret
•
Tobias Hank
•
Matthias Wocher
•
Wolfram Mauser
•
Gustau Camps-Valls
|
2020-12-07
|
Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
Taehyeon Kim
•
Jaeyeon Ahn
•
Nakyil Kim
•
Seyoung Yun
|
2020-12-07
|
Bayesian optimization assisted unsupervised learning for efficient intra-tumor partitioning in MRI and survival prediction for glioblastoma patients
YiFan Li
•
Chao Li
•
Stephen Price
•
Carola-Bibiane Schönlieb
•
Xi Chen
|
2020-12-05
|
Fusing Optical and SAR time series for LAI gap filling with multioutput Gaussian processes
Luca Pipia
•
Jordi Muñoz-Marí
•
Eatidal Amin
•
Santiago Belda
•
Gustau Camps-Valls
•
Jochem Verrelst
|
2020-12-05
|
Gaussian process approach within a data-driven POD framework for fluid dynamics engineering problems
Giulio Ortali
•
Nicola Demo
•
Gianluigi Rozza
|
2020-12-03
|
A similarity-based Bayesian mixture-of-experts model
Tianfang Zhang
•
Rasmus Bokrantz
•
Jimmy Olsson
|
2020-12-03
|
Gaussian Process-based Approach for Bilevel Optimization in Power Systems -- A Critical Load Restoration Case
Yang Liu
•
Hung D. Nguyen
|
2020-12-02
|
A Gaussian Process-based Price-Amount Curve Construction for Demand Response Provided by Internet Data Centers
Yang Liu
•
Hung D. Nguyen
|
2020-12-02
|
The temporal overfitting problem with applications in wind power curve modeling
Abhinav Prakash
•
Rui Tuo
•
Yu Ding
|
2020-12-02
|
Gaussian Process Based Message Filtering for Robust Multi-Agent Cooperation in the Presence of Adversarial Communication
Rupert Mitchell
•
Jan Blumenkamp
•
Amanda Prorok
|
2020-12-01
|
Identifying signal and noise structure in neural population activity with Gaussian process factor models
Stephen Keeley
•
Mikio Aoi
•
Yiyi Yu
•
Spencer Smith
•
Jonathan W. Pillow
|
2020-12-01
|
Non-reversible Gaussian processes for identifying latent dynamical structure in neural data
Virginia Rutten
•
Alberto Bernacchia
•
Maneesh Sahani
•
Guillaume Hennequin
|
2020-12-01
|
Neuronal Gaussian Process Regression
|
Johannes Friedrich
|
2020-12-01
|
Stochastic Gradient Descent in Correlated Settings: A Study on Gaussian Processes
Hao Chen
•
Lili Zheng
•
Raed Al Kontar
•
Garvesh Raskutti
|
2020-12-01
|
Generalised Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati
•
Omer Deniz Akyildiz
•
Theodoros Damoulas
•
Adam Johansen
|
2020-12-01
|
An emulator for the Lyman-$α$ forest in beyond-$Λ$CDM cosmologies
Christian Pedersen
•
Andreu Font-Ribera
•
Keir K. Rogers
•
Patrick McDonald
•
Hiranya V. Peiris
•
Andrew Pontzen
•
Anže Slosar
|
2020-11-30
|
Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes
Morgane Menz
•
Sylvain Dubreuil
•
Jérôme Morio
•
Christian Gogu
•
Nathalie Bartoli
•
Marie Chiron
|
2020-11-30
|
Equivalence of Convergence Rates of Posterior Distributions and Bayes Estimators for Functions and Nonparametric Functionals
Zejian Liu
•
Meng Li
|
2020-11-27
|
Knowledge transfer across cell lines using Hybrid Gaussian Process models with entity embedding vectors
Clemens Hutter
•
Moritz von Stosch
•
Mariano Nicolas Cruz Bournazou
•
Alessandro Butté
|
2020-11-27
|
Combinatorial Bayesian Optimization with Random Mapping Functions to Convex Polytope
Jungtaek Kim
•
Minsu Cho
•
Seungjin Choi
|
2020-11-26
|
Computational Model of Motion Sickness Describing the Effects of Learning Exogenous Motion Dynamics
Takahiro Wada
|
2020-11-25
|
Autonomous Experiments in Scanning Probe Microscopy and Spectroscopy: Choosing Where to Explore Polarization Dynamics in Ferroelectrics
|
Rama K. Vasudevan
•
Kyle Kelley
•
Hiroshi Funakubo
•
Stephen Jesse
•
Sergei V. Kalinin
•
Maxim Ziatdinov
|
2020-11-25
|
Equivariant Conditional Neural Processes
Peter Holderrieth
•
Michael Hutchinson
•
Yee Whye Teh
|
2020-11-25
|
Random Sampling High Dimensional Model Representation Gaussian Process Regression (RS-HDMR-GPR): a Python module for representing multidimensional functions with machine-learned lower-dimensional terms
Owen Ren
•
Mohamed Ali Boussaidi
•
Dmitry Voytsekhovsky
•
Sergei Manzhos
|
2020-11-24
|
Data-aided Sensing for Gaussian Process Regression in IoT Systems
Jinho Choi
|
2020-11-23
|
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization
Gauthier Guinet
•
Valerio Peronne
•
Cédric Archambeau
|
2020-11-23
|
Robust Gaussian Process Regression Based on Iterative Trimming
Zhao-Zhou Li
•
Lu Li
•
Zhengyi Shao
|
2020-11-22
|
Neural Network Gaussian Process Considering Input Uncertainty for Composite Structures Assembly
Cheolhei Lee
•
Jianguo Wu
•
Wenjia Wang
•
Xiaowei Yue
|
2020-11-21
|
Central and Non-central Limit Theorems arising from the Scattering Transform and its Neural Activation Generalization
Gi-Ren Liu
•
Yuan-Chung Sheu
•
Hau-Tieng Wu
|
2020-11-21
|
Application of Deep Learning-based Interpolation Methods to Nearshore Bathymetry
Yizhou Qian
•
Mojtaba Forghani
•
Jonghyun Harry Lee
•
Matthew Farthing
•
Tyler Hesser
•
Peter Kitanidis
•
Eric Darve
|
2020-11-19
|
Learning Interpretable Flight's 4D Landing Parameters Using Tunnel Gaussian Process
Sim Kuan Goh
•
Narendra Pratap Singh
•
Zhi Jun Lim
•
Sameer Alam
|
2020-11-18
|
Understanding Variational Inference in Function-Space
David R. Burt
•
Sebastian W. Ober
•
Adrià Garriga-Alonso
•
Mark van der Wilk
|
2020-11-18
|
Gaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with Uncertain Input Effects
Fernando Castañeda
•
Jason J. Choi
•
Bike Zhang
•
Claire J. Tomlin
•
Koushil Sreenath
|
2020-11-14
|
Towards Human-Level Learning of Complex Physical Puzzles
Kei Ota
•
Devesh K. Jha
•
Diego Romeres
•
Jeroen van Baar
•
Kevin A. Smith
•
Takayuki Semitsu
•
Tomoaki Oiki
•
Alan Sullivan
•
Daniel Nikovski
•
Joshua B. Tenenbaum
|
2020-11-14
|
Factorized Gaussian Process Variational Autoencoders
|
Metod Jazbec
•
Michael Pearce
•
Vincent Fortuin
|
2020-11-14
|
Towards NNGP-guided Neural Architecture Search
Daniel S. Park
•
Jaehoon Lee
•
Daiyi Peng
•
Yuan Cao
•
Jascha Sohl-Dickstein
|
2020-11-11
|
Energy consumption forecasting using a stacked nonparametric Bayesian approach
Dilusha Weeraddana
•
Nguyen Lu Dang Khoa
•
Lachlan O Neil
•
Weihong Wang
•
Chen Cai
|
2020-11-11
|
Forecasting Emergency Department Capacity Constraints for COVID Isolation Beds
Erik Drysdale
•
Devin Singh
•
Anna Goldenberg
|
2020-11-09
|
Pathwise Conditioning of Gaussian Processes
James T. Wilson
•
Viacheslav Borovitskiy
•
Alexander Terenin
•
Peter Mostowsky
•
Marc Peter Deisenroth
|
2020-11-08
|
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang
•
Shengyang Sun
•
Roger Grosse
|
2020-11-06
|
Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders
Rohit Batra
•
Hanjun Dai
•
Tran Doan Huan
•
Lihua Chen
•
Chiho Kim
•
Will R. Gutekunst
•
Le Song
•
Rampi Ramprasad
|
2020-11-04
|
Bayesian Variational Optimization for Combinatorial Spaces
Tony C. Wu
•
Daniel Flam-Shepherd
•
Alán Aspuru-Guzik
|
2020-11-03
|
Uncertainty Quantification of Darcy Flow through Porous Media using Deep Gaussian Process
A. Daneshkhah
•
M. Mousavi Nezhad
•
O. Chatrabgoun
•
M. Esmaeilbeigi
•
T. Sedighi
•
S. Abolfathi
|
2020-11-03
|
Learning a Generative Motion Model from Image Sequences based on a Latent Motion Matrix
Julian Krebs
•
Hervé Delingette
•
Nicholas Ayache
•
Tommaso Mansi
|
2020-11-03
|
Data-Driven Assisted Chance-Constrained Energy and Reserve Scheduling with Wind Curtailment
Xingyu Lei
•
Student Member
•
Zhifang Yang
•
Member
•
Junbo Zhao
•
Juan Yu
•
Senior Member
•
IEEE
|
2020-11-02
|
Sample-efficient reinforcement learning using deep Gaussian processes
Charles Gadd
•
Markus Heinonen
•
Harri Lähdesmäki
•
Samuel Kaski
|
2020-11-02
|
Identifying Exoplanets with Deep Learning. IV. Removing Stellar Activity Signals from Radial Velocity Measurements Using Neural Networks
Zoe L. de Beurs
•
Andrew Vanderburg
•
Christopher J. Shallue
•
Xavier Dumusque
•
Andrew Collier Cameron
•
Lars A. Buchhave
•
Rosario Cosentino
•
Adriano Ghedina
•
Raphaëlle D. Haywood
•
Nicholas Langellier
•
David W. Latham
•
Mercedes López-Morales
•
Michel Mayor
•
Giusi Micela
•
Timothy W. Milbourne
•
Annelies Mortier
•
Emilio Molinari
•
Francesco Pepe
•
David F. Phillips
•
Matteo Pinamonti
•
Giampaolo Piotto
•
Ken Rice
•
Dimitar Sasselov
•
Alessandro Sozzetti
•
Stéphane Udry
•
Christopher A. Watson
|
2020-10-30
|
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
|
Vu Nguyen
•
Vaden Masrani
•
Rob Brekelmans
•
Michael A. Osborne
•
Frank Wood
|
2020-10-29
|
Matern Gaussian Processes on Graphs
Viacheslav Borovitskiy
•
Iskander Azangulov
•
Alexander Terenin
•
Peter Mostowsky
•
Marc Peter Deisenroth
•
Nicolas Durrande
|
2020-10-29
|
A Computationally Efficient Approach to Black-box Optimization using Gaussian Process Models
Sudeep Salgia
•
Sattar Vakili
•
Qing Zhao
|
2020-10-27
|
Are wider nets better given the same number of parameters?
Anna Golubeva
•
Behnam Neyshabur
•
Guy Gur-Ari
|
2020-10-27
|
Scalable Gaussian Process Variational Autoencoders
|
Metod Jazbec
•
Vincent Fortuin
•
Michael Pearce
•
Stephan Mandt
•
Gunnar Rätsch
|
2020-10-26
|
Variational Bayesian Unlearning
Quoc Phong Nguyen
•
Bryan Kian Hsiang Low
•
Patrick Jaillet
|
2020-10-24
|
Ranking Creative Language Characteristics in Small Data Scenarios
Julia Siekiera
•
Marius Köppel
•
Edwin Simpson
•
Kevin Stowe
•
Iryna Gurevych
•
Stefan Kramer
|
2020-10-23
|
Statistical Guarantees for Transformation Based Models with Applications to Implicit Variational Inference
Sean Plummer
•
Shuang Zhou
•
Anirban Bhattacharya
•
David Dunson
•
Debdeep Pati
|
2020-10-23
|
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
•
Jonathan So
•
William Tebbutt
•
Vincent Fortuin
•
Michael Pearce
•
Richard E. Turner
|
2020-10-20
|
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
•
Kian Hsiang Low
•
Patrick Jaillet
|
2020-10-20
|
Stationary Activations for Uncertainty Calibration in Deep Learning
Lassi Meronen
•
Christabella Irwanto
•
Arno Solin
|
2020-10-19
|
Movement-induced Priors for Deep Stereo
Yuxin Hou
•
Muhammad Kamran Janjua
•
Juho Kannala
•
Arno Solin
|
2020-10-18
|
KrigHedge: GP Surrogates for Delta Hedging
Mike Ludkovski
•
Yuri Saporito
|
2020-10-16
|
Multi-fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces
Francesco Romor
•
Marco Tezzele
•
Gianluigi Rozza
|
2020-10-16
|
Diffusion Based Gaussian Processes on Restricted Domains
David B Dunson
•
Hau-Tieng Wu
•
Nan Wu
|
2020-10-14
|
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
Ben Adlam
•
Jaehoon Lee
•
Lechao Xiao
•
Jeffrey Pennington
•
Jasper Snoek
|
2020-10-14
|
Local Differential Privacy for Bayesian Optimization
Xingyu Zhou
•
Jian Tan
|
2020-10-13
|
Multi-Objective Bayesian Optimisation and Joint Inversion for Active Sensor Fusion
Sebastian Haan
•
Fabio Ramos
•
Dietmar Müller
|
2020-10-12
|
Online Learning and Distributed Control for Residential Demand Response
Xin Chen
•
YingYing Li
•
Jun Shimada
•
Na Li
|
2020-10-11
|
Physics-Informed Gaussian Process Regression for Probabilistic States Estimation and Forecasting in Power Grids
Tong Ma
•
David Alonso Barajas-Solano
•
Ramakrishna Tipireddy
•
Alexandre M. Tartakovsky
|
2020-10-09
|
Dynamic mode decomposition for forecasting and analysis of power grid load data
Daniel Dylewsky
•
David Barajas-Solano
•
Tong Ma
•
Alexandre M. Tartakovsky
•
J. Nathan Kutz
|
2020-10-08
|
Emulator-based global sensitivity analysis for flow-like landslide run-out models
Hu Zhao
•
Florian Amann
•
Julia Kowalski
|
2020-10-08
|
Yield Optimization using Hybrid Gaussian Process Regression and a Genetic Multi-Objective Approach
|
Mona Fuhrländer
•
Sebastian Schöps
|
2020-10-08
|
Bayesian Optimized Monte Carlo Planning
John Mern
•
Anil Yildiz
•
Zachary Sunberg
•
Tapan Mukerji
•
Mykel J. Kochenderfer
|
2020-10-07
|
Splitting Gaussian Process Regression for Streaming Data
Nick Terry
•
Youngjun Choe
|
2020-10-06
|
Gaussian Process Models with Low-Rank Correlation Matrices for Both Continuous and Categorical Inputs
Dominik Kirchhoff
•
Sonja Kuhnt
|
2020-10-06
|
Fixing Asymptotic Uncertainty of Bayesian Neural Networks with Infinite ReLU Features
Agustinus Kristiadi
•
Matthias Hein
•
Philipp Hennig
|
2020-10-06
|
Improving Reconstructive Surgery Design using Gaussian Process Surrogates to Capture Material Behavior Uncertainty
Casey Stowers
•
Taeksang Lee
•
Ilias Bilionis
•
Arun Gosain
•
Adrian Buganza Tepole
|
2020-10-05
|
Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
Paul Westermann
•
Ralph Evins
|
2020-10-05
|
Short-term prediction of photovoltaic power generation using Gaussian process regression
Yahya Al Lawati
•
Jack Kelly
•
Dan Stowell
|
2020-10-05
|
BOSS: Bayesian Optimization over String Spaces
Henry B. Moss
•
Daniel Beck
•
Javier Gonzalez
•
David S. Leslie
•
Paul Rayson
|
2020-10-02
|
Joint data imputation and mechanistic modelling for simulating heart-brain interactions in incomplete datasets
Banus Jaume
•
Sermesant Maxime
•
Camara Oscar
•
Lorenzi Marco
|
2020-10-02
|
Gravitational wave peak luminosity model for precessing binary black holes
Afura Taylor
•
Vijay Varma
|
2020-09-30
|
Robust Detection of Objects under Periodic Motion with Gaussian Process Filtering
Joris Guerin
•
Anne Magaly de Paula Canuto
•
Luiz Marcos Garcia Goncalves
|
2020-09-29
|
Multi-task Causal Learning with Gaussian Processes
Virginia Aglietti
•
Theodoros Damoulas
•
Mauricio Álvarez
•
Javier González
|
2020-09-27
|
Lateral Force Prediction using Gaussian Process Regression for Intelligent Tire Systems
Bruno Henrique Groenner Barbosa
•
Nan Xu
•
Hassan Askari
•
Amir Khajepour
|
2020-09-25
|
Stein Variational Gaussian Processes
Thomas Pinder
•
Christopher Nemeth
•
David Leslie
|
2020-09-25
|
Modifier Adaptation Meets Bayesian Optimization and Derivative-Free Optimization
Ehecatl Antonio del Rio-Chanona
•
Panagiotis Petsagkourakis
•
Eric Bradford
•
Jose Eduardo Alves Graciano
•
Benoit Chachuat
|
2020-09-18
|
Cross-Entropy Method Variants for Optimization
|
Robert J. Moss
|
2020-09-18
|
Mean-Variance Analysis in Bayesian Optimization under Uncertainty
Shogo Iwazaki
•
Yu Inatsu
•
Ichiro Takeuchi
|
2020-09-17
|
Automated Stroke Rehabilitation Assessment using Wearable Accelerometers in Free-Living Environments
Xi Chen
•
Yu Guan
•
Jian-Qing Shi
•
Xiu-Li Du
•
Janet Eyre
|
2020-09-17
|
Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes
Shihao Yang
•
Samuel W. K. Wong
•
S. C. Kou
|
2020-09-16
|
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
•
Kia Khezeli
•
Victor Picheny
|
2020-09-15
|
Interpolating the Trace of the Inverse of Matrix $\mathbf{A} + t \mathbf{B}$
Siavash Ameli
•
Shawn C. Shadden
|
2020-09-15
|
Tracking disease outbreaks from sparse data with Bayesian inference
Bryan Wilder
•
Michael J. Mina
•
Milind Tambe
|
2020-09-12
|
Symplectic Gaussian Process Regression of Hamiltonian Flow Maps
Katharina Rath
•
Christopher G. Albert
•
Bernd Bischl
•
Udo von Toussaint
|
2020-09-11
|
Generalized Multi-Output Gaussian Process Censored Regression
Daniele Gammelli
•
Kasper Pryds Rolsted
•
Dario Pacino
•
Filipe Rodrigues
|
2020-09-10
|
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands
R. G. Seymour
•
T. Kypraios
•
P. D. O'Neill
•
T. J. Hagenaars
|
2020-09-09
|
$\mathcal{RL}_1$-$\mathcal{GP}$: Safe Simultaneous Learning and Control
Aditya Gahlawat
•
Arun Lakshmanan
•
Lin Song
•
Andrew Patterson
•
Zhuohuan Wu
•
Naira Hovakimyan
•
Evangelos Theodorou
|
2020-09-08
|
Prediction-Coherent LSTM-based Recurrent Neural Network for Safer Glucose Predictions in Diabetic People
Maxime De Bois
•
Mounîm A. El Yacoubi
•
Mehdi Ammi
|
2020-09-08
|
Physics-informed Gaussian Process for Online Optimization of Particle Accelerators
Adi Hanuka
•
X. Huang
•
J. Shtalenkova
•
D. Kennedy
•
A. Edelen
•
V. R. Lalchand
•
D. Ratner
•
J. Duris
|
2020-09-08
|
Sequential Subspace Search for Functional Bayesian Optimization Incorporating Experimenter Intuition
Alistair Shilton
•
Sunil Gupta
•
Santu Rana
•
Svetha Venkatesh
|
2020-09-08
|
Augmented Gaussian Random Field: Theory and Computation
Sheng Zhang
•
Xiu Yang
•
Samy Tindel
•
Guang Lin
|
2020-09-03
|
Real Image Super Resolution Via Heterogeneous Model using GP-NAS
Zhihong Pan
•
Baopu Li
•
Teng Xi
•
Yanwen Fan
•
Gang Zhang
•
Jingtuo Liu
•
Junyu Han
•
Errui Ding
|
2020-09-02
|
Non-parametric generalized linear model
Matthew Dowling
•
Yuan Zhao
•
Il Memming Park
|
2020-09-02
|
Gaussian Process Gradient Maps for Loop-Closure Detection in Unstructured Planetary Environments
Cedric Le Gentil
•
Mallikarjuna Vayugundla
•
Riccardo Giubilato
•
Wolfgang Stürzl
•
Teresa Vidal-Calleja
•
Rudolph Triebel
|
2020-09-01
|
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
|
Haitao Liu
•
Yew-Soon Ong
•
Xiaomo Jiang
•
Xiaofang Wang
|
2020-08-29
|
Machine learning thermal circuit network model for thermal design optimization of electronic circuit board layout with transient heating chips
Daiki Otaki
•
Hirofumi Nonaka
•
Noboru Yamada
|
2020-08-28
|
Fast Bayesian Force Fields from Active Learning: Study of Inter-Dimensional Transformation of Stanene
|
Yu Xie
•
Jonathan Vandermause
•
Lixin Sun
•
Andrea Cepellotti
•
Boris Kozinsky
|
2020-08-26
|
Variable selection for Gaussian process regression through a sparse projection
Chiwoo Park
•
David J. Borth
•
Nicholas S. Wilson
•
Chad N. Hunter
|
2020-08-25
|
Exoplanet Validation with Machine Learning: 50 new validated Kepler planets
David J. Armstrong
•
Jevgenij Gamper
•
Theodoros Damoulas
|
2020-08-24
|
Fast Approximate Multi-output Gaussian Processes
|
Vladimir Joukov
•
Dana Kulić
|
2020-08-22
|
On Lower Bounds for Standard and Robust Gaussian Process Bandit Optimization
Xu Cai
•
Jonathan Scarlett
|
2020-08-20
|
Improving predictions of Bayesian neural networks via local linearization
Alexander Immer
•
Maciej Korzepa
•
Matthias Bauer
|
2020-08-19
|
Bayesian neural networks and dimensionality reduction
Deborshee Sen
•
Theodore Papamarkou
•
David Dunson
|
2020-08-18
|
Preferential Bayesian optimisation with Skew Gaussian Processes
Alessio Benavoli
•
Dario Azzimonti
•
Dario Piga
|
2020-08-15
|
Data-Informed Decomposition for Localized Uncertainty Quantification of Dynamical Systems
Waad Subber
•
Sayan Ghosh
•
Piyush Pandita
•
Yiming Zhang
•
Liping Wang
|
2020-08-14
|
Continuous Optimization Benchmarks by Simulation
|
Martin Zaefferer
•
Frederik Rehbach
|
2020-08-14
|
Meta Learning MPC using Finite-Dimensional Gaussian Process Approximations
Elena Arcari
•
Andrea Carron
•
Melanie N. Zeilinger
|
2020-08-13
|
Balanced Depth Completion between Dense Depth Inference and Sparse Range Measurements via KISS-GP
Sungho Yoon
•
Ayoung Kim
|
2020-08-12
|
Deep State-Space Gaussian Processes
Zheng Zhao
•
Muhammad Emzir
•
Simo Särkkä
|
2020-08-11
|
Multi-speaker Text-to-speech Synthesis Using Deep Gaussian Processes
Kentaro Mitsui
•
Tomoki Koriyama
•
Hiroshi Saruwatari
|
2020-08-07
|
Multifidelity Data Fusion via Gradient-Enhanced Gaussian Process Regression
Yixiang Deng
•
Guang Lin
•
Xiu Yang
|
2020-08-03
|
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
Nina Kudryashova
•
Theoklitos Amvrosiadis
•
Nathalie Dupuy
•
Nathalie Rochefort
•
Arno Onken
|
2020-08-03
|
OFAI-UKP at [email protected]: Predicting the Humorousness of Tweets Using Gaussian Process Preference Learning
Tristan Miller
•
Erik-Lân Do Dinh
•
Edwin Simpson
•
Iryna Gurevych
|
2020-08-03
|
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
•
Samuel S. Schoenholz
•
Jeffrey Pennington
•
Ben Adlam
•
Lechao Xiao
•
Roman Novak
•
Jascha Sohl-Dickstein
|
2020-07-31
|
Cold Posteriors and Aleatoric Uncertainty
Ben Adlam
•
Jasper Snoek
•
Samuel L. Smith
|
2020-07-31
|
Random Forests for dependent data
Arkajyoti Saha
•
Sumanta Basu
•
Abhirup Datta
|
2020-07-30
|
Regression modelling with I-priors
Wicher Bergsma
•
Haziq Jamil
|
2020-07-30
|
Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification
|
Santiago Toledo-Cortés
•
Melissa De La Pava
•
Oscar Perdómo
•
Fabio A. González
|
2020-07-29
|
Multi-Output Gaussian Processes with Functional Data: A Study on Coastal Flood Hazard Assessment
|
A. F. López-Lopera
•
D. Idier
•
J. Rohmer
•
F. Bachoc
|
2020-07-28
|
Bayesian Dynamic Mapping of an Exo-Earth from Photometric Variability
|
Hajime Kawahara
•
Kento Masuda
|
2020-07-26
|
Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation
Romit Maulik
•
Themistoklis Botsas
•
Nesar Ramachandra
•
Lachlan Robert Mason
•
Indranil Pan
|
2020-07-23
|
MAGMA: Inference and Prediction with Multi-Task Gaussian Processes
Arthur Leroy
•
Pierre Latouche
•
Benjamin Guedj
•
Servane Gey
|
2020-07-21
|
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
|
2020-07-21
|
Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil
Matheus Henrique Dal Molin Ribeiro
•
Ramon Gomes da Silva
•
Viviana Cocco Mariani
•
Leandro dos Santos Coelho
|
2020-07-21
|
Multi-level Training and Bayesian Optimization for Economical Hyperparameter Optimization
Yang Yang
•
Ke Deng
•
Michael Zhu
|
2020-07-20
|
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake Snell
•
Richard Zemel
|
2020-07-20
|
Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized Gaussian Process Approach
Yun Yuan
•
Qinzheng Wang
•
Xianfeng Terry Yang
|
2020-07-17
|
Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
Joonas Pääkkönen
|
2020-07-14
|
Highway Traffic State Estimation Using Physics Regularized Gaussian Process: Discretized Formulation
Yun Yuan
•
Zhao Zhang
•
Xianfeng Terry Yang
|
2020-07-14
|
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
|
William J. Wilkinson
•
Paul E. Chang
•
Michael Riis Andersen
•
Arno Solin
|
2020-07-12
|
Driver Behavior Modelling at the Urban Intersection via Canonical Correlation Analysis
Zirui Li
•
Chao Lu
•
Cheng Gong
•
Cheng Gong
•
Jinghang Li
•
Lianzhen Wei
|
2020-07-11
|
Numerical simulation, clustering and prediction of multi-component polymer precipitation
Pavan Inguva
•
Lachlan Mason
•
Indranil Pan
•
Miselle Hengardi
•
Omar K. Matar
|
2020-07-10
|
Inferring proximity from Bluetooth Low Energy RSSI with Unscented Kalman Smoothers
Tom Lovett
•
Mark Briers
•
Marcos Charalambides
•
Radka Jersakova
•
James Lomax
•
Chris Holmes
|
2020-07-09
|
Understanding the effect of hyperparameter optimization on machine learning models for structure design problems
Xianping Du
•
Hongyi Xu
•
Feng Zhu
|
2020-07-04
|
Gaussian Process Regression with Local Explanation
Yuya Yoshikawa
•
Tomoharu Iwata
|
2020-07-03
|
BOSH: Bayesian Optimization by Sampling Hierarchically
Henry B. Moss
•
David S. Leslie
•
Paul Rayson
|
2020-07-02
|
High Dimensional Bayesian Optimization Assisted by Principal Component Analysis
Elena Raponi
•
Hao Wang
•
Mariusz Bujny
•
Simonetta Boria
•
Carola Doerr
|
2020-07-02
|
Wearable Respiration Monitoring: Interpretable Inference with Context and Sensor Biomarkers
Ridwan Alam
•
David B. Peden
•
John C. Lach
|
2020-07-02
|
Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes
Ali Hebbal
•
Loic Brevault
•
Mathieu Balesdent
•
El-Ghazali Talbi
•
Nouredine Melab
|
2020-06-29
|
Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Shali Jiang
•
Daniel R. Jiang
•
Maximilian Balandat
•
Brian Karrer
•
Jacob R. Gardner
•
Roman Garnett
|
2020-06-29
|
Data-Driven Topology Optimization with Multiclass Microstructures using Latent Variable Gaussian Process
Liwei Wang
•
Siyu Tao
•
Ping Zhu
•
Wei Chen
|
2020-06-27
|
Prediction with Gaussian Process Dynamical Models
Thomas Beckers
•
Sandra Hirche
|
2020-06-25
|
Epoch-evolving Gaussian Process Guided Learning
Jiabao Cui
•
Xuewei Li
•
Bin Li
•
Hanbin Zhao
•
Bourahla Omar
•
Xi Li
|
2020-06-25
|
Heat kernel and intrinsic Gaussian processes on manifolds
Ke Ye
•
Mu Niu
•
Pokman Cheung
|
2020-06-25
|
Green Machine Learning via Augmented Gaussian Processes and Multi-Information Source Optimization
Antonio Candelieri
•
Riccardo Perego
•
Francesco Archetti
|
2020-06-25
|
Likelihood-Free Gaussian Process for Regression
|
Yuta Shikuri
|
2020-06-24
|
Pareto Active Learning with Gaussian Processes and Adaptive Discretization
Andi Nika
•
Kerem Bozgan
•
Çağın Ararat
•
Cem Tekin
|
2020-06-24
|
Variational Orthogonal Features
David R. Burt
•
Carl Edward Rasmussen
•
Mark van der Wilk
|
2020-06-23
|
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
|
Yuling Yao
•
Aki Vehtari
•
Andrew Gelman
|
2020-06-22
|
Bayesian Quadrature Optimization for Probability Threshold Robustness Measure
Shogo Iwazaki
•
Yu Inatsu
•
Ichiro Takeuchi
|
2020-06-22
|
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes
|
Mengdi Xu
•
Wenhao Ding
•
Jiacheng Zhu
•
Zuxin Liu
•
Baiming Chen
•
Ding Zhao
|
2020-06-19
|
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
•
Henri Pesonen
•
Markus Heinonen
•
Jukka Corander
•
Samuel Kaski
|
2020-06-18
|
Exact posterior distributions of wide Bayesian neural networks
Jiri Hron
•
Yasaman Bahri
•
Roman Novak
•
Jeffrey Pennington
•
Jascha Sohl-Dickstein
|
2020-06-18
|
GPIRT: A Gaussian Process Model for Item Response Theory
JBrandon Duck-Mayr
•
Roman Garnett
•
Jacob M. Montgomery
|
2020-06-17
|
Longitudinal Variational Autoencoder
Siddharth Ramchandran
•
Gleb Tikhonov
•
Miika Koskinen
•
Harri Lähdesmäki
|
2020-06-17
|
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
•
Zi Lin
•
Shreyas Padhy
•
Dustin Tran
•
Tania Bedrax-Weiss
•
Balaji Lakshminarayanan
|
2020-06-17
|
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
Laura Swiler
•
Mamikon Gulian
•
Ari Frankel
•
Cosmin Safta
•
John Jakeman
|
2020-06-16
|
Real-Time Regression with Dividing Local Gaussian Processes
Armin Lederer
•
Alejandro Jose Ordonez Conejo
•
Korbinian Maier
•
Wenxin Xiao
•
Sandra Hirche
|
2020-06-16
|
Sparse Gaussian Process Based On Hat Basis Functions
Wenqi Fang
•
Huiyun Li
•
Hui Huang
•
Shaobo Dang
•
Zhejun Huang
•
Zheng Wang
|
2020-06-15
|
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
•
Felix Berkenkamp
•
Andreas Krause
|
2020-06-15
|
Variational Bayesian Monte Carlo with Noisy Likelihoods
|
Luigi Acerbi
|
2020-06-15
|
GP3: A Sampling-based Analysis Framework for Gaussian Processes
Armin Lederer
•
Markus Kessler
•
Sandra Hirche
|
2020-06-14
|
Learning Stable Nonparametric Dynamical Systems with Gaussian Process Regression
Wenxin Xiao
•
Armin Lederer
•
Sandra Hirche
|
2020-06-14
|
Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search
Vu Nguyen
•
Tam Le
•
Makoto Yamada
•
Michael A Osborne
|
2020-06-13
|
Neural Architecture Search using Bayesian Optimisation with Weisfeiler-Lehman Kernel
Binxin Ru
•
Xingchen Wan
•
Xiaowen Dong
•
Michael Osborne
|
2020-06-13
|
Automated Measurement of Quasar Redshift with a Gaussian Process
Leah Fauber
•
Ming-Feng Ho
•
Simeon Bird
•
Christian R. Shelton
•
Roman Garnett
•
Ishita Korde
|
2020-06-12
|
Gaussian Processes on Graphs via Spectral Kernel Learning
Yin-Cong Zhi
•
Yin Cheng Ng
•
Xiaowen Dong
|
2020-06-12
|
Fourier Sparse Leverage Scores and Approximate Kernel Learning
Tamás Erdélyi
•
Cameron Musco
•
Christopher Musco
|
2020-06-12
|
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
•
Ta-Chu Kao
•
Marco Tripodi
•
Guillaume Hennequin
|
2020-06-12
|
SAMBA: Safe Model-Based & Active Reinforcement Learning
Alexander I. Cowen-Rivers
•
Daniel Palenicek
•
Vincent Moens
•
Mohammed Abdullah
•
Aivar Sootla
•
Jun Wang
•
Haitham Ammar
|
2020-06-12
|
Time-Resolved fMRI Shared Response Model using Gaussian Process Factor Analysis
MohammadReza Ebrahimi
•
Navona Calarco
•
Kieran Campbell
•
Colin Hawco
•
Aristotle Voineskos
•
Ashish Khisti
|
2020-06-10
|
Semiparametric Bayesian Inference for the Transmission Dynamics of COVID-19 with a State-Space Model
Tianjian Zhou
•
Yuan Ji
|
2020-06-10
|
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
•
Theofanis Karaletsos
•
Thang D. Bui
|
2020-06-09
|
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Harrison Zhu
•
Xing Liu
•
Ruya Kang
•
Zhichao Shen
•
Seth Flaxman
•
François-Xavier Briol
|
2020-06-09
|
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
•
Victor Picheny
•
Artem Artemev
|
2020-06-09
|
tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder
Alex Campbell
•
Pietro Liò
|
2020-06-08
|
Schrödinger PCA: You Only Need Variances for Eigenmodes
Ziming Liu
•
Sitian Qian
•
Yixuan Wang
•
Yuxuan Yan
•
Tianyi Yang
|
2020-06-08
|
Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation
|
Julian Berk
•
Sunil Gupta
•
Santu Rana
•
Svetha Venkatesh
|
2020-06-08
|
Physics Regularized Gaussian Processes
Zheng Wang
•
Wei Xing
•
Robert Kirby
•
Shandian Zhe
|
2020-06-08
|
Multi-Fidelity High-Order Gaussian Processes for Physical Simulation
Zheng Wang
•
Wei Xing
•
Robert Kirby
•
Shandian Zhe
|
2020-06-08
|
Learning compositional models of robot skills for task and motion planning
Zi Wang
•
Caelan Reed Garrett
•
Leslie Pack Kaelbling
•
Tomás Lozano-Pérez
|
2020-06-08
|
A conditional one-output likelihood formulation for multitask Gaussian processes
Vanessa Gómez-Verdejo
•
Óscar García-Hinde
•
Manel Martínez-Ramón
|
2020-06-05
|
Health Indicator Forecasting for Improving Remaining Useful Life Estimation
Qiyao Wang
•
Ahmed Farahat
•
Chetan Gupta
•
Haiyan Wang
|
2020-06-05
|
Sparse Gaussian Processes via Parametric Families of Compactly-supported Kernels
Jarred Barber
|
2020-06-05
|
Quadruply Stochastic Gaussian Processes
Trefor W. Evans
•
Prasanth B. Nair
|
2020-06-04
|
Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian Optimization and Tuning Rules
Michele Fraccaroli
•
Evelina Lamma
•
Fabrizio Riguzzi
|
2020-06-03
|
Autonomous Materials Discovery Driven by Gaussian Process Regression with Inhomogeneous Measurement Noise and Anisotropic Kernels
Marcus M. Noack
•
Gregory S. Doerk
•
Ruipeng Li
•
Jason K. Streit
•
Richard A. Vaia
•
Kevin G. Yager
•
Masafumi Fukuto
|
2020-06-03
|
Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models
Jwala Dhamala
•
John L. Sapp
•
B. Milan Horácek
•
Linwei Wang
|
2020-06-02
|
Semi-supervised deep learning for high-dimensional uncertainty quantification
Zequn Wang
•
Mingyang Li
|
2020-06-01
|
GP-NAS: Gaussian Process Based Neural Architecture Search
Zhihang Li
•
Teng Xi
•
Jiankang Deng
•
Gang Zhang
•
Shengzhao Wen
•
Ran He
|
2020-06-01
|
Video Instance Segmentation Tracking With a Modified VAE Architecture
Chung-Ching Lin
•
Ying Hung
•
Rogerio Feris
•
Linglin He
|
2020-06-01
|
Bayesian Restoration of Audio Degraded by Low-Frequency Pulses Modeled via Gaussian Process
Hugo Tremonte de Carvalho
•
Flávio Rainho Ávila
•
Luiz Wagner Pereira Biscainho
|
2020-05-28
|
Codebook-Based Beam Tracking for Conformal ArrayEnabled UAV MmWave Networks
Jinglin Zhang
•
Wenjun Xu
•
Hui Gao
•
Miao Pan
•
Zhu Han
•
Ping Zhang
|
2020-05-28
|
SafeML: Safety Monitoring of Machine Learning Classifiers through Statistical Difference Measure
|
Koorosh Aslansefat
•
Ioannis Sorokos
•
Declan Whiting
•
Ramin Tavakoli Kolagari
•
Yiannis Papadopoulos
|
2020-05-27
|
How Training Data Impacts Performance in Learning-based Control
Armin Lederer
•
Alexandre Capone
•
Jonas Umlauft
•
Sandra Hirche
|
2020-05-25
|
Path Imputation Strategies for Signature Models of Irregular Time Series
Michael Moor
•
Max Horn
•
Christian Bock
•
Karsten Borgwardt
•
Bastian Rieck
|
2020-05-25
|
Longitudinal Deep Kernel Gaussian Process Regression
Junjie Liang
•
Yanting Wu
•
Dongkuan Xu
•
Vasant Honavar
|
2020-05-24
|
MANGO: A Python Library for Parallel Hyperparameter Tuning
|
Sandeep Singh Sandha
•
Mohit Aggarwal
•
Igor Fedorov
•
Mani Srivastava
|
2020-05-22
|
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
•
Houman Owhadi
•
Andrew M. Stuart
|
2020-05-22
|
Data-driven Efficient Solvers and Predictions of Conformational Transitions for Langevin Dynamics on Manifold in High Dimensions
Yuan Gao
•
Jian-Guo Liu
•
Nan Wu
|
2020-05-22
|
Global Optimization of Gaussian processes
Artur M. Schweidtmann
•
Dominik Bongartz
•
Daniel Grothe
•
Tim Kerkenhoff
•
Xiaopeng Lin
•
Jaromil Najman
•
Alexander Mitsos
|
2020-05-21
|
Scalable penalized spatiotemporal land-use regression for ground-level nitrogen dioxide
Kyle P Messier
•
Matthias Katzfuss
|
2020-05-19
|
Deep Latent-Variable Kernel Learning
|
Haitao Liu
•
Yew-Soon Ong
•
Xiaomo Jiang
•
Xiaofang Wang
|
2020-05-18
|
Expedited Multi-Target Search with Guaranteed Performance via Multi-fidelity Gaussian Processes
Lai Wei
•
Xiaobo Tan
•
Vaibhav Srivastava
|
2020-05-18
|
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
•
Laurence Aitchison
|
2020-05-17
|
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian
•
Ahmed M. Alaa
•
Mihaela van der Schaar
|
2020-05-13
|
Parameter Inference for Weak Lensing using Gaussian Processes and MOPED
Arrykrishna Mootoovaloo
•
Alan F. Heavens
•
Andrew H. Jaffe
•
Florent Leclercq
|
2020-05-13
|
Machine learning based digital twin for dynamical systems with multiple time-scales
Souvik Chakraborty
•
Sondipon Adhikari
|
2020-05-12
|
Multi-Scale Zero-Order Optimization of Smooth Functions in an RKHS
Shubhanshu Shekhar
•
Tara Javidi
|
2020-05-11
|
Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian Optimization with Application to Aircraft Design
Rémy Priem
•
Nathalie Bartoli
•
Youssef Diouane
•
Alessandro Sgueglia
|
2020-05-11
|
Multi-Fidelity Gaussian Process based Empirical Potential Development for Si:H Nanowires
Moonseop Kim
•
Huayi Yin
•
Guang Lin
|
2020-05-11
|
Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques
Moajjem Hossain Chowdhury
•
Md Nazmul Islam Shuzan
•
Muhammad E. H. Chowdhury
•
Zaid B Mahbub
•
M. Monir Uddin
•
Amith Khandakar
•
Mamun Bin Ibne Reaz
|
2020-05-07
|
A Gaussian Process Upsampling Model for Improvements in Optical Character Recognition
Steven I Reeves
•
Dongwook Lee
•
Anurag Singh
•
Kunal Verma
|
2020-05-07
|
Planning from Images with Deep Latent Gaussian Process Dynamics
Nathanael Bosch
•
Jan Achterhold
•
Laura Leal-Taixé
•
Jörg Stückler
|
2020-05-07
|
Active Preference-Based Gaussian Process Regression for Reward Learning
|
Erdem Bıyık
•
Nicolas Huynh
•
Mykel J. Kochenderfer
•
Dorsa Sadigh
|
2020-05-06
|
Using Machine Learning to Emulate Agent-Based Simulations
Claudio Angione
•
Eric Silverman
•
Elisabeth Yaneske
|
2020-05-05
|
Localized active learning of Gaussian process state space models
Alexandre Capone
•
Jonas Umlauft
•
Thomas Beckers
•
Armin Lederer
•
Sandra Hirche
|
2020-05-04
|
Evaluation of Deep Gaussian Processes for Text Classification
P. Jayashree
•
P. K. Srijith
|
2020-05-01
|
Pedestrian Path, Pose and Intention Prediction through Gaussian Process Dynamical Models and Pedestrian Activity Recognition
Raul Quintero
•
Ignacio Parra
•
David Fernandez Llorca
•
Miguel Angel Sotelo
|
2020-04-30
|
Continual Deep Learning by Functional Regularisation of Memorable Past
Pingbo Pan
•
Siddharth Swaroop
•
Alexander Immer
•
Runa Eschenhagen
•
Richard E. Turner
•
Mohammad Emtiyaz Khan
|
2020-04-29
|
Guided search for desired functional responses via Bayesian optimization of generative model: hysteresis loop shape engineering in ferroelectrics
Sergei V. Kalinin
•
Maxim Ziatdinov
•
Rama K. Vasudevan
|
2020-04-27
|
Active Learning for Gaussian Process Considering Uncertainties with Application to Shape Control of Composite Fuselage
Xiaowei Yue
•
Yuchen Wen
•
Jeffrey H. Hunt
•
Jianjun Shi
|
2020-04-23
|
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck
Alec Koppel
•
Hrusikesha Pradhan
•
Ketan Rajawat
|
2020-04-23
|
Learning Constrained Dynamics with Gauss Principle adhering Gaussian Processes
|
A. Rene Geist
•
Sebastian Trimpe
|
2020-04-23
|
Gaussian Process Manifold Interpolation for Probabilistic Atrial Activation Maps and Uncertain Conduction Velocity
Sam Coveney
•
Cesare Corrado
•
Caroline H Roney
•
Daniel O'Hare
•
Steven E Williams
•
Mark D O'Neill
•
Steven A Niederer
•
Richard H Clayton
•
Jeremy E Oakley
•
Richard D Wilkinson
|
2020-04-22
|
Utterance-level Sequential Modeling For Deep Gaussian Process Based Speech Synthesis Using Simple Recurrent Unit
Tomoki Koriyama
•
Hiroshi Saruwatari
|
2020-04-22
|
Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework
Sandrine Gümbel
•
Thorsten Schmidt
|
2020-04-16
|
Gaussian Process Learning-based Probabilistic Optimal Power Flow
Parikshit Pareek
•
Hung D. Nguyen
|
2020-04-16
|
Foreground modelling via Gaussian process regression: an application to HERA data
Abhik Ghosh
•
Florent Mertens
•
Gianni Bernardi
•
Mário G. Santos
•
Nicholas S. Kern
•
Christopher L. Carilli
•
Trienko L. Grobler
•
Léon V. E. Koopmans
•
Daniel C. Jacobs
•
Adrian Liu
•
Aaron R. Parsons
•
Miguel F. Morales
•
James E. Aguirre
•
Joshua S. Dillon
•
Bryna J. Hazelton
•
Oleg M. Smirnov
•
Bharat K. Gehlot
•
Siyanda Matika
•
Paul Alexander
•
Zaki S. Ali
•
Adam P. Beardsley
•
Roshan K. Benefo
•
Tashalee S. Billings
•
Judd D. Bowman
•
Richard F. Bradley
•
Carina Cheng
•
Paul M. Chichura
•
David R. DeBoer
•
Eloy de Lera Acedo
•
Aaron Ewall-Wice
•
Gcobisa Fadana
•
Nicolas Fagnoni
•
Austin F. Fortino
•
Randall Fritz
•
Steve R. Furlanetto
•
Samavarti Gallardo
•
Brian Glendenning
•
Deepthi Gorthi
•
Bradley Greig
•
Jasper Grobbelaar
•
Jack Hickish
•
Alec Josaitis
•
Austin Julius
•
Amy S. Igarashi
•
MacCalvin Kariseb
•
Saul A. Kohn
•
Matthew Kolopanis
•
Telalo Lekalake
•
Anita Loots
•
David MacMahon
•
Lourence Malan
•
Cresshim Malgas
•
Matthys Maree
•
Zachary E. Martinot
•
Nathan Mathison
•
Eunice Matsetela
•
Andrei Mesinger
•
Abraham R. Neben
•
Bojan Nikolic
•
Chuneeta D. Nunhokee
•
Nipanjana Patra
•
Samantha Pieterse
•
Nima Razavi-Ghods
•
Jon Ringuette
•
James Robnett
•
Kathryn Rosie
•
Raddwine Sell
•
Craig Smith
•
Angelo Syce
•
Max Tegmark
•
Nithyanandan Thyagarajan
•
Peter K. G. Williams
•
Haoxuan Zheng
|
2020-04-13
|
Safe Multi-Agent Interaction through Robust Control Barrier Functions with Learned Uncertainties
|
Richard Cheng
•
Mohammad Javad Khojasteh
•
Aaron D. Ames
•
Joel W. Burdick
|
2020-04-11
|
Exploration of lattice Hamiltonians for functional and structural discovery via Gaussian Process-based Exploration-Exploitation
Sergei V. Kalinin
•
Mani Valleti
•
Rama K. Vasudevan
•
Maxim Ziatdinov
|
2020-04-09
|
Online Constrained Model-based Reinforcement Learning
Benjamin van Niekerk
•
Andreas Damianou
•
Benjamin Rosman
|
2020-04-07
|
Direct loss minimization algorithms for Bayesian predictors
Yadi Wei
•
Rishit Sheth
•
Roni Khardon
|
2020-04-07
|
On Negative Transfer and Structure of Latent Functions in Multi-output Gaussian Processes
Moyan Li
•
Raed Kontar
|
2020-04-06
|
Gaussian Process Boosting
|
Fabio Sigrist
|
2020-04-06
|
Scalable Gaussian Processes, with Guarantees: Kernel Approximations and Deep Feature Extraction
Constantinos Daskalakis
•
Petros Dellaportas
•
Aristeidis Panos
|
2020-04-03
|
Predicting the outputs of finite networks trained with noisy gradients
Gadi Naveh
•
Oded Ben-David
•
Haim Sompolinsky
•
Zohar Ringel
|
2020-04-02
|
Projection Pursuit Gaussian Process Regression
Gecheng Chen
•
Rui Tuo
|
2020-04-01
|
A Blackbox Yield Estimation Workflow with Gaussian Process Regression Applied to the Design of Electromagnetic Devices
|
Mona Fuhrländer
•
Sebastian Schöps
|
2020-03-30
|
Adaptation of Engineering Wake Models using Gaussian Process Regression and High-Fidelity Simulation Data
Leif Erik Andersson
•
Bart Doekemeijer
•
Daan van der Hoek
•
Jan-Willem van Wingerden
•
Lars Imsland
|
2020-03-30
|
Closed-loop Parameter Identification of Linear Dynamical Systems through the Lens of Feedback Channel Coding Theory
Ali Reza Pedram
•
Takashi Tanaka
|
2020-03-27
|
On Infinite-Width Hypernetworks
Etai Littwin
•
Tomer Galanti
•
Lior Wolf
•
Greg Yang
|
2020-03-27
|
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
Max Veit
•
David M. Wilkins
•
Yang Yang
•
Robert A. DiStasio Jr.
•
Michele Ceriotti
|
2020-03-27
|
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains
|
Michele Peruzzi
•
Sudipto Banerjee
•
Andrew O. Finley
|
2020-03-25
|
Preferential Batch Bayesian Optimization
Eero Siivola
•
Akash Kumar Dhaka
•
Michael Riis Andersen
•
Javier Gonzalez
•
Pablo Garcia Moreno
•
Aki Vehtari
|
2020-03-25
|
Detecting Multiple DLAs per Spectrum in SDSS DR12 with Gaussian Processes
Ming-Feng Ho
•
Simeon Bird
•
Roman Garnett
|
2020-03-24
|
Efficient Gaussian Process Bandits by Believing only Informative Actions
Amrit Singh Bedi
•
Dheeraj Peddireddy
•
Vaneet Aggarwal
•
Alec Koppel
|
2020-03-23
|
Analysis of Greenhouse Gases
Shalin Shah
|
2020-03-21
|
Adaptive Batching for Gaussian Process Surrogates with Application in Noisy Level Set Estimation
Xiong Lyu
•
Mike Ludkovski
|
2020-03-19
|
Gaze-Sensing LEDs for Head Mounted Displays
Kaan Akşit
•
Jan Kautz
•
David Luebke
|
2020-03-18
|
Gaussian process aided function comparison using noisy scattered data
Abhinav Prakash
•
Rui Tuo
•
Yu Ding
|
2020-03-17
|
The Elliptical Processes: a New Family of Flexible Stochastic Processes
Maria Bånkestad
•
Jens Sjölund
•
Jalil Taghia
•
Thomas Schön
|
2020-03-13
|
Data-driven surrogate modelling and benchmarking for process equipment
Gabriel F. N. Gonçalves
•
Assen Batchvarov
•
Yuyi Liu
•
Yuxin Liu
•
Lachlan Mason
•
Indranil Pan
•
Omar K. Matar
|
2020-03-13
|
Time-varying Gaussian Process Bandit Optimization with Non-constant Evaluation Time
Hideaki Imamura
•
Nontawat Charoenphakdee
•
Futoshi Futami
•
Issei Sato
•
Junya Honda
•
Masashi Sugiyama
|
2020-03-10
|
Channel Attention with Embedding Gaussian Process: A Probabilistic Methodology
Jiyang Xie
•
Dongliang Chang
•
Zhanyu Ma
•
Guoqiang Zhang
•
Jun Guo
|
2020-03-10
|
Composition of kernel and acquisition functions for High Dimensional Bayesian Optimization
Antonio Candelieri
•
Ilaria Giordani
•
Riccardo Perego
•
Francesco Archetti
|
2020-03-09
|
FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing
Feng Yin
•
Zhidi Lin
•
Yue Xu
•
Qinglei Kong
•
Deshi Li
•
Sergios Theodoridis
•
Shuguang
•
Cui
|
2020-03-08
|
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
•
Markus Heinonen
•
Edwin V. Bonilla
•
Zheyang Shen
•
Maurizio Filippone
|
2020-03-06
|
Multi-Output Gaussian Processes for Multi-Population Longevity Modeling
Nhan Huynh
•
Mike Ludkovski
|
2020-03-05
|
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
•
Andreas Krause
•
Jonathan Scarlett
|
2020-03-04
|
Regression via Implicit Models and Optimal Transport Cost Minimization
|
Saurav Manchanda
•
Khoa Doan
•
Pranjul Yadav
•
S. Sathiya Keerthi
|
2020-03-03
|
Gaussian Process Policy Optimization
Ashish Rao
•
Bidipta Sarkar
•
Tejas Narayanan
|
2020-03-02
|
Imbalance Learning for Variable Star Classification
|
Zafiirah Hosenie
•
Robert Lyon
•
Benjamin Stappers
•
Arrykrishna Mootoovaloo
•
Vanessa McBride
|
2020-02-27
|
Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients
Sébastien Petit
•
Julien Bect
•
Sébastien da Veiga
•
Paul Feliot
•
Emmanuel Vazquez
|
2020-02-26
|
Model-Based Reinforcement Learning for Physical Systems Without Velocity and Acceleration Measurements
Alberto Dalla Libera
•
Diego Romeres
•
Devesh K. Jha
•
Bill Yerazunis
•
Daniel Nikovski
|
2020-02-25
|
Generalized Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati
•
Ömer Deniz Akyildiz
•
Theodoros Damoulas
•
Adam Johansen
|
2020-02-23
|
Gaussian Process Regression for Probabilistic Short-term Solar Output Forecast
Fatemeh Najibi
•
Dimitra Apostolopoulou
•
Eduardo Alonso
|
2020-02-23
|
Nonmyopic Gaussian Process Optimization with Macro-Actions
Dmitrii Kharkovskii
•
Chun Kai Ling
•
Kian Hsiang Low
|
2020-02-22
|
Efficiently Sampling Functions from Gaussian Process Posteriors
|
James T. Wilson
•
Viacheslav Borovitskiy
•
Alexander Terenin
•
Peter Mostowsky
•
Marc Peter Deisenroth
|
2020-02-21
|
Development of modeling and control strategies for an approximated Gaussian process
Shisheng Cui
•
Chia-Jung Chang
|
2020-02-12
|
Regret Bounds for Noise-Free Bayesian Optimization
Sattar Vakili
•
Victor Picheny
•
Nicolas Durrande
|
2020-02-12
|
Ensemble of Sparse Gaussian Process Experts for Implicit Surface Mapping with Streaming Data
Johannes A. Stork
•
Todor Stoyanov
|
2020-02-12
|
On transfer learning of neural networks using bi-fidelity data for uncertainty propagation
Subhayan De
•
Jolene Britton
•
Matthew Reynolds
•
Ryan Skinner
•
Kenneth Jansen
•
Alireza Doostan
|
2020-02-11
|
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
•
Pietro Liò
|
2020-02-11
|
Gaussian process imputation of multiple financial series
Taco de Wolff
•
Alejandro Cuevas
•
Felipe Tobar
|
2020-02-11
|
Surrogate Assisted Evolutionary Algorithm for Medium Scale Expensive Multi-Objective Optimisation Problems
Xiaoran Ruan
•
Ke Li
•
Bilel Derbel
•
Arnaud Liefooghe
|
2020-02-08
|
Deep Moment Matching Kernel for Multi-source Gaussian Processes
Chi-Ken Lu
•
Patrick Shafto
|
2020-02-07
|
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
Yun Yuan
•
Xianfeng Terry Yang
•
Zhao Zhang
•
Shandian Zhe
|
2020-02-06
|
One-Shot Bayes Opt with Probabilistic Population Based Training
Jack Parker-Holder
•
Vu Nguyen
•
Stephen Roberts
|
2020-02-06
|
Learning Probabilistic Intersection Traffic Models for Trajectory Prediction
Andrew Patterson
•
Aditya Gahlawat
•
Naira Hovakimyan
|
2020-02-05
|
Data-driven high-fidelity prediction of the equivalent sand-grain height of rough surfaces
Mostafa Aghaei Jouybari
•
Junlin Yuan
•
Giles J. Brereton
|
2020-02-04
|
Uncertainty Quantification for Bayesian Optimization
Rui Tuo
•
Wenjia Wang
|
2020-02-04
|
Federated Learning under Channel Uncertainty: Joint Client Scheduling and Resource Allocation
Madhusanka Manimel Wadu
•
Sumudu Samarakoon
•
Mehdi Bennis
|
2020-02-03
|
Linearly Constrained Gaussian Processes with Boundary Conditions
Markus Lange-Hegermann
|
2020-02-03
|
A memory of motion for visual predictive control tasks
Antonio Paolillo
•
Teguh Santoso Lembono
•
Sylvain Calinon
|
2020-01-31
|
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
•
George Wynne
•
Filip Tronarp
•
Chris J. Oates
•
Simo Särkkä
|
2020-01-29
|
Convergence Guarantees for Gaussian Process Means with Misspecified Likelihoods and Smoothness
George Wynne
•
François-Xavier Briol
•
Mark Girolami
|
2020-01-29
|
TPLVM: Portfolio Construction by Student's $t$-process Latent Variable Model
Yusuke Uchiyama
•
Kei Nakagawa
|
2020-01-29
|
Privacy-Preserving Gaussian Process Regression -- A Modular Approach to the Application of Homomorphic Encryption
Peter Fenner
•
Edward O. Pyzer-Knapp
|
2020-01-28
|
Bayesian nonparametric shared multi-sequence time series segmentation
Olga Mikheeva
•
Ieva Kazlauskaite
•
Hedvig Kjellström
•
Carl Henrik Ek
|
2020-01-27
|
Bayesian optimization for backpropagation in Monte-Carlo tree search
Yueqin Li
•
Nengli Lim
|
2020-01-25
|
The role of surrogate models in the development of digital twins of dynamic systems
Souvik Chakraborty
•
Sondipon Adhikari
•
Ranjan Ganguli
|
2020-01-25
|
Estimating Latent Demand of Shared Mobility through Censored Gaussian Processes
|
Daniele Gammelli
•
Inon Peled
•
Filipe Rodrigues
•
Dario Pacino
•
Haci A. Kurtaran
•
Francisco C. Pereira
|
2020-01-21
|
Projection based Active Gaussian Process Regression for Pareto Front Modeling
Zhengqi Gao
•
Jun Tao
•
Yangfeng Su
•
Dian Zhou
•
Xuan Zeng
|
2020-01-20
|
Scalable Hyperparameter Optimization with Lazy Gaussian Processes
|
Raju Ram
•
Sabine Müller
•
Franz-Josef Pfreundt
•
Nicolas R. Gauger
•
Janis Keuper
|
2020-01-16
|
Doubly Sparse Variational Gaussian Processes
Vincent Adam
•
Stefanos Eleftheriadis
•
Nicolas Durrande
•
Artem Artemev
•
James Hensman
|
2020-01-15
|
Robust Gaussian Process Regression with a Bias Model
Chiwoo Park
•
David J. Borth
•
Nicholas S. Wilson
•
Chad N. Hunter
•
Fritz J. Friedersdorf
|
2020-01-14
|
An Investigation of Feature-based Nonrigid Image Registration using Gaussian Process
Siming Bayer
•
Ute Spiske
•
Jie Luo
•
Tobias Geimer
•
William M. Wells III
•
Martin Ostermeier
•
Rebecca Fahrig
•
Arya Nabavi
•
Christoph Bert
•
Ilker Eyupoglo
•
Andreas Maier
|
2020-01-12
|
Scalable Hybrid HMM with Gaussian Process Emission for Sequential Time-series Data Clustering
Yohan Jung
•
Jinkyoo Park
|
2020-01-07
|
Wide Neural Networks with Bottlenecks are Deep Gaussian Processes
Devanshu Agrawal
•
Theodore Papamarkou
•
Jacob Hinkle
|
2020-01-03
|
Learning Human Postural Control with Hierarchical Acquisition Functions
Nils Rottmann
•
Tjasa Kunavar
•
Jan Babic
•
Jan Peters
•
Elmar Rueckert
|
2020-01-01
|
Learning Neural Surrogate Model for Warm-Starting Bayesian Optimization
Haotian Zhang
•
Jian Sun
•
Zongben Xu
|
2020-01-01
|
Approximate Inference for Fully Bayesian Gaussian Process Regression
Vidhi Lalchand
•
Carl Edward Rasmussen
|
2019-12-31
|
Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao
•
Jeffrey Pennington
•
Samuel S. Schoenholz
|
2019-12-30
|
A statistical test for correspondence of texts to the Zipf-Mandelbrot law
Anik Chakrabarty
•
Mikhail Chebunin
•
Artyom Kovalevskii
•
Ilya Pupyshev
•
Natalia Zakrevskaya
•
Qianqian Zhou
|
2019-12-25
|
Simulation of Turbulent Flow around a Generic High-Speed Train using Hybrid Models of RANS Numerical Method with Machine Learning
Alireza Hajipour
•
Arash Mirabdolah Lavasani
•
Mohammad Eftekhari Yazdi
•
Amir Mosavi
•
Shahaboddin Shamshirband
•
Kwok-Wing Chau
|
2019-12-25
|
On Simulation and Trajectory Prediction with Gaussian Process Dynamics
Lukas Hewing
•
Elena Arcari
•
Lukas P. Fröhlich
•
Melanie N. Zeilinger
|
2019-12-23
|
Tensor Basis Gaussian Process Models of Hyperelastic Materials
Ari Frankel
•
Reese Jones
•
Laura Swiler
|
2019-12-23
|
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
Rui Zhang
•
Christian J. Walder
•
Edwin V. Bonilla
•
Marian-Andrei Rizoiu
•
Lexing Xie
|
2019-12-21
|
Methods for comparing uncertainty quantifications for material property predictions
Kevin Tran
•
Willie Neiswanger
•
Junwoong Yoon
•
Eric Xing
•
Zachary W. Ulissi
|
2019-12-20
|
SSSpaNG! Stellar Spectra as Sparse, data-driven, Non-Gaussian processes
Stephen M. Feeney
•
Benjamin D. Wandelt
•
Melissa K. Ness
|
2019-12-19
|
Gaussian Process Latent Variable Model Factorization for Context-aware Recommender Systems
|
Wei Huang
•
Richard Yi Da Xu
|
2019-12-19
|
Heteroscedastic Gaussian Process Regression on the Alkenone over Sea Surface Temperatures
|
Taehee Lee
•
Charles E. Lawrence
|
2019-12-18
|
Learning Arbitrary Quantities of Interest from Expensive Black-Box Functions through Bayesian Sequential Optimal Design
Piyush Pandita
•
Nimish Awalgaonkar
•
Ilias Bilionis
•
Jitesh Panchal
|
2019-12-16
|
Active emulation of computer codes with Gaussian processes -- Application to remote sensing
Daniel Heestermans Svendsen
•
Luca Martino
•
Gustau Camps-Valls
|
2019-12-13
|
On the relationship between multitask neural networks and multitask Gaussian Processes
Karthikeyan K
•
Shubham Kumar Bharti
•
Piyush Rai
|
2019-12-12
|
Learning and Optimization with Bayesian Hybrid Models
Elvis A. Eugene
•
Xian Gao
•
Alexander W. Dowling
|
2019-12-12
|
Tensor Completion via Gaussian Process Based Initialization
Yermek Kapushev
•
Ivan Oseledets
•
Evgeny Burnaev
|
2019-12-11
|
Bayesian Hyperparameter Optimization with BoTorch, GPyTorch and Ax
Daniel T. Chang
|
2019-12-11
|
Frequentist Consistency of Generalized Variational Inference
Jeremias Knoblauch
|
2019-12-10
|
Location Trace Privacy Under Conditional Priors
Casey Meehan
•
Kamalika Chaudhuri
|
2019-12-09
|
An interpretable probabilistic machine learning method for heterogeneous longitudinal studies
|
Juho Timonen
•
Henrik Mannerström
•
Aki Vehtari
•
Harri Lähdesmäki
|
2019-12-07
|
Ordinal Bayesian Optimisation
Victor Picheny
•
Sattar Vakili
•
Artem Artemev
|
2019-12-05
|
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression
Tong Teng
•
Jie Chen
•
Yehong Zhang
•
Kian Hsiang Low
|
2019-12-05
|
Numerical Gaussian process Kalman filtering
Armin Küper
•
Steffen Waldherr
|
2019-12-03
|
Nonnegative Gaussian process tomography for generalized segmented planar detectors
D. Blyth
•
N. Mullins
•
E. Galyaev
•
J. Holmes
|
2019-12-02
|
Multivariate Sparse Coding of Nonstationary Covariances with Gaussian Processes
Rui Li
|
2019-12-01
|
Infra-slow brain dynamics as a marker for cognitive function and decline
Shagun Ajmera Shyam Sunder Ajmera
•
Shreya Rajagopal
•
Razi Rehman
•
Devarajan Sridharan
|
2019-12-01
|
Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes
|
Lingge Li
•
Dustin Pluta
•
Babak Shahbaba
•
Norbert Fortin
•
Hernando Ombao
•
Pierre Baldi
|
2019-12-01
|
Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
|
Greg Yang
|
2019-12-01
|
Bayesian Optimization Approach for Analog Circuit Synthesis Using Neural Network
Shuhan Zhang
•
Wenlong Lyu
•
Fan Yang
•
Changhao Yan
•
Dian Zhou
•
Xuan Zeng
|
2019-12-01
|
Richer priors for infinitely wide multi-layer perceptrons
Russell Tsuchida
•
Fred Roosta
•
Marcus Gallagher
|
2019-11-29
|
Ultra-Reliable and Low-Latency Vehicular Communication: An Active Learning Approach
Mohamed K. Abdel-Aziz
•
Sumudu Samarakoon
•
Mehdi Bennis
•
Walid Saad
|
2019-11-27
|
Imaging Mechanism for Hyperspectral Scanning Probe Microscopy via Gaussian Process Modelling
Maxim Ziatdinov
•
Dohyung Kim
•
Sabine Neumayer
•
Rama K. Vasudevan
•
Liam Collins
•
Stephen Jesse
•
Mahshid Ahmadi
•
Sergei V. Kalinin
|
2019-11-26
|
Actively Learning Gaussian Process Dynamics
Mona Buisson-Fenet
•
Friedrich Solowjow
•
Sebastian Trimpe
|
2019-11-22
|
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
|
Juan-José Giraldo
•
Mauricio A. Álvarez
|
2019-11-22
|
Towards a complete 3D morphable model of the human head
|
Stylianos Ploumpis
•
Evangelos Ververas
•
Eimear O' Sullivan
•
Stylianos Moschoglou
•
Haoyang Wang
•
Nick Pears
•
William A. P. Smith
•
Baris Gecer
•
Stefanos Zafeiriou
|
2019-11-18
|
Iterative Construction of Gaussian Process Surrogate Models for Bayesian Inference
Leen Alawieh
•
Jonathan Goodman
•
John B. Bell
|
2019-11-17
|
Causal inference using Bayesian non-parametric quasi-experimental design
|
Max Hinne
•
Marcel A. J. van Gerven
•
Luca Ambrogioni
|
2019-11-15
|
Conjugate Gradients for Kernel Machines
Simon Bartels
•
Philipp Hennig
|
2019-11-14
|
Uncertainty on Asynchronous Time Event Prediction
|
Marin Biloš
•
Bertrand Charpentier
•
Stephan Günnemann
|
2019-11-13
|
Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness
Zhu Li
•
Adrian Perez-Suay
•
Gustau Camps-Valls
•
Dino Sejdinovic
|
2019-11-11
|
Bayesian Active Learning for Structured Output Design
Kota Matsui
•
Shunya Kusakawa
•
Keisuke Ando
•
Kentaro Kutsukake
•
Toru Ujihara
•
Ichiro Takeuchi
|
2019-11-09
|
Online learning-based Model Predictive Control with Gaussian Process Models and Stability Guarantees
Michael Maiworm
•
Daniel Limon
•
Rolf Findeisen
|
2019-11-08
|
Non-parametric Probabilistic Load Flow using Gaussian Process Learning
Parikshit Pareek
•
Chuan Wang
•
Hung D. Nguyen
|
2019-11-08
|
GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian Process Models
Pavel Berkovich
•
Eric Perim
•
Wessel Bruinsma
|
2019-11-05
|
Application of Gaussian Process Regression to Koopman Mode Decomposition for Noisy Dynamic Data
Akitoshi Masuda
•
Yoshihiko Susuki
•
Manel Martínez-Ramón
•
Andrea Mammoli
•
Atsushi Ishigame
|
2019-11-04
|
On Batch Bayesian Optimization
Sayak Ray Chowdhury
•
Aditya Gopalan
|
2019-11-04
|
Seasonally-Adjusted Auto-Regression of Vector Time Series
Enzo Busseti
|
2019-11-04
|
Online tuning and light source control using a physics-informed Gaussian process Adi
A. Hanuka
•
J. Duris
•
J. Shtalenkova
•
D. Kennedy
•
A. Edelen
•
D. Ratner
•
X. Huang
|
2019-11-04
|
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
•
Ruosong Wang
•
Dingli Yu
•
Simon S. Du
•
Wei Hu
•
Ruslan Salakhutdinov
•
Sanjeev Arora
|
2019-11-03
|
Continual Multi-task Gaussian Processes
|
Pablo Moreno-Muñoz
•
Antonio Artés-Rodríguez
•
Mauricio A. Álvarez
|
2019-10-31
|
Safe Exploration for Interactive Machine Learning
Matteo Turchetta
•
Felix Berkenkamp
•
Andreas Krause
|
2019-10-30
|
Function-Space Distributions over Kernels
|
Gregory W. Benton
•
Wesley J. Maddox
•
Jayson P. Salkey
•
Julio Albinati
•
Andrew Gordon Wilson
|
2019-10-29
|
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
|
Greg Yang
|
2019-10-28
|
Convolutional Sequence Generation for Skeleton-Based Action Synthesis
|
Sijie Yan
•
Zhizhong Li
•
Yuanjun Xiong
•
Huahan Yan
|
2019-10-27
|
Implicit Posterior Variational Inference for Deep Gaussian Processes
|
Haibin Yu
•
Yizhou Chen
•
Zhongxiang Dai
•
Kian Hsiang Low
•
Patrick Jaillet
|
2019-10-26
|
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
|
Colin White
•
Willie Neiswanger
•
Yash Savani
|
2019-10-25
|
Sparse Orthogonal Variational Inference for Gaussian Processes
|
Jiaxin Shi
•
Michalis K. Titsias
•
Andriy Mnih
|
2019-10-23
|
DCT Maps: Compact Differentiable Lidar Maps Based on the Cosine Transform
Alexander Schaefer
•
Lukas Luft
•
Wolfram Burgard
|
2019-10-23
|
Generalised learning of time-series: Ornstein-Uhlenbeck processes
Mehmet Süzen
•
Alper Yegenoglu
|
2019-10-21
|
Bayesian Optimization Allowing for Common Random Numbers
Michael Pearce
•
Matthias Poloczek
•
Juergen Branke
|
2019-10-21
|
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
|
2019-10-17
|
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
|
Ryan-Rhys Griffiths
•
Miguel Garcia-Ortegon
•
Alexander A. Aldrick
•
Alpha A. Lee
|
2019-10-17
|
Generative Learning of Counterfactual for Synthetic Control Applications in Econometrics
Chirag Modi
•
Uros Seljak
|
2019-10-16
|
Parametric Gaussian Process Regressors
Martin Jankowiak
•
Geoff Pleiss
•
Jacob R. Gardner
|
2019-10-16
|
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
•
Raed Kontar
|
2019-10-15
|
Regularized Sparse Gaussian Processes
Rui Meng
•
Herbert Lee
•
Soper Braden
•
Priyadip Ray
|
2019-10-13
|
Bayesian Optimization using Pseudo-Points
Chao Qian
•
Hang Xiong
•
Ke Xue
|
2019-10-12
|
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
•
Roberto Santana
•
Alexander Mendiburu
•
Jose A. Lozano
|
2019-10-11
|
Learning from demonstration with model-based Gaussian process
Noémie Jaquier
•
David Ginsbourger
•
Sylvain Calinon
|
2019-10-11
|
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
Julius von Kügelgen
•
Paul K Rubenstein
•
Bernhard Schölkopf
•
Adrian Weller
|
2019-10-09
|
Electric Load and Power Forecasting Using Ensemble Gaussian Process Regression
Tong Ma
•
Renke Huang
•
David Barajas-Solano
•
Ramakrishna Tipireddy
•
Alexandre M. Tartakovsky
|
2019-10-09
|
Multi-Vehicle Interaction Scenarios Generation with Interpretable Traffic Primitives and Gaussian Process Regression
Weiyang Zhang
•
Wenshuo Wang
•
Ding Zhao
|
2019-10-08
|
mfEGRA: Multifidelity Efficient Global Reliability Analysis
Anirban Chaudhuri
•
Alexandre N. Marques
•
Karen E. Willcox
|
2019-10-06
|
Operational Calibration: Debugging Confidence Errors for DNNs in the Field
Zenan Li
•
Xiaoxing Ma
•
Chang Xu
•
Jingwei Xu
•
Chun Cao
•
Jian Lü
|
2019-10-06
|
Cascaded Gaussian Processes for Data-efficient Robot Dynamics Learning
Sahand Rezaei-Shoshtari
•
David Meger
•
Inna Sharf
|
2019-10-05
|
Dynamic Embedding on Textual Networks via a Gaussian Process
|
Pengyu Cheng
•
Yitong Li
•
Xinyuan Zhang
•
Liqun Cheng
•
David Carlson
•
Lawrence Carin
|
2019-10-05
|
Bayesian Optimization for Materials Design with Mixed Quantitative and Qualitative Variables
Yichi Zhang
•
Daniel Apley
•
Wei Chen
|
2019-10-03
|
Kepler data analysis: non-Gaussian noise and Fourier Gaussian process analysis of star variability
Jakob Robnik
•
Uroš Seljak
|
2019-10-02
|
MGP-AttTCN: An Interpretable Machine Learning Model for the Prediction of Sepsis
Margherita Rosnati
•
Vincent Fortuin
|
2019-09-27
|
Deep recurrent Gaussian process with variational Sparse Spectrum approximation
Roman Föll
•
Bernard Haasdonk
•
Markus Hanselmann
•
Holger Ulmer
|
2019-09-27
|
Debiased Bayesian inference for average treatment effects
|
Kolyan Ray
•
Botond Szabo
|
2019-09-26
|
The Dynamical Gaussian Process Latent Variable Model in the Longitudinal Scenario
Thanh Le
•
Vasant Honavar
|
2019-09-25
|
Adversarial Vulnerability Bounds for Gaussian Process Classification
Michael Thomas Smith
•
Kathrin Grosse
•
Michael Backes
•
Mauricio A Alvarez
|
2019-09-19
|
Bayesian Optimization under Heavy-tailed Payoffs
|
Sayak Ray Chowdhury
•
Aditya Gopalan
|
2019-09-16
|
MCTS-based Automated Negotiation Agent
Cédric Buron
•
Zahia Guessoum
•
Sylvain Ductor
|
2019-09-12
|
Predicting optimal value functions by interpolating reward functions in scalarized multi-objective reinforcement learning
Arpan Kusari
•
Jonathan P. How
|
2019-09-11
|
Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model
Yohei Sawada
|
2019-09-09
|
Estimating Fingertip Forces, Torques, and Local Curvatures from Fingernail Images
Nutan Chen
•
Göran Westling
•
Benoni B. Edin
•
Patrick van der Smagt
|
2019-09-09
|
Unsupervised Image Regression for Heterogeneous Change Detection
Luigi T. Luppino
•
Filippo M. Bianchi
•
Gabriele Moser
•
Stian N. Anfinsen
|
2019-09-07
|
Deep kernel learning for integral measurements
Carl Jidling
•
Johannes Hendriks
•
Thomas B. Schön
•
Adrian Wills
|
2019-09-04
|
Latent Gaussian process with composite likelihoods for data-driven disease stratification
Siddharth Ramchandran
•
Miika Koskinen
•
Harri Lähdesmäki
|
2019-09-04
|
Regression-clustering for Improved Accuracy and Training Cost with Molecular-Orbital-Based Machine Learning
Lixue Cheng
•
Nikola B. Kovachki
•
Matthew Welborn
•
Thomas F. Miller III
|
2019-09-04
|
A novel active learning-based Gaussian process metamodelling strategy for estimating the full probability distribution in forward UQ analysis
Ziqi Wang
•
Marco Broccardo
|
2019-08-27
|
Finite size corrections for neural network Gaussian processes
Joseph M. Antognini
|
2019-08-27
|
Using Contextual Information to Improve Blood Glucose Prediction
Mohammad Akbari
•
Rumi Chunara
|
2019-08-24
|
Adaptive Configuration Oracle for Online Portfolio Selection Methods
Favour M. Nyikosa
•
Michael A. Osborne
•
Stephen J. Roberts
|
2019-08-22
|
Are Registration Uncertainty and Error Monotonically Associated
Jie Luo
•
Sarah Frisken
•
Duo Wang
•
Alexandra Golby
•
Masashi Sugiyama
•
William M. Wells III
|
2019-08-21
|
Trend Filtering: A Modern Statistical Tool for Time-Domain Astronomy and Astronomical Spectroscopy
Collin A. Politsch
•
Jessi Cisewski-Kehe
•
Rupert A. C. Croft
•
Larry Wasserman
|
2019-08-20
|
Harmonized Multimodal Learning with Gaussian Process Latent Variable Models
Guoli Song
•
Shuhui Wang
•
Qingming Huang
•
Qi Tian
|
2019-08-14
|
Mixture-based Multiple Imputation Model for Clinical Data with a Temporal Dimension
Ye Xue
•
Diego Klabjan
•
Yuan Luo
|
2019-08-12
|
Variational Autoencoded Regression: High Dimensional Regression of Visual Data on Complex Manifold
YoungJoon Yoo
•
Sangdoo Yun
•
Hyung Jin Chang
•
Yiannis Demiris
•
Jin Young Choi
|
2019-08-12
|
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
|
Ksenia Korovina
•
Sailun Xu
•
Kirthevasan Kandasamy
•
Willie Neiswanger
•
Barnabas Poczos
•
Jeff Schneider
•
Eric P. Xing
|
2019-08-05
|
Gaussian Process Models of Sound Change in Indo-Aryan Dialectology
Chundra Cathcart
|
2019-08-01
|
Modeling Daily Pan Evaporation in Humid Climates Using Gaussian Process Regression
Sevda Shabani
•
Saeed Samadianfard
•
Mohammad Taghi Sattari
•
Shahab Shamshirband
•
Amir Mosavi
•
Tibor Kmet
•
Annamaria R. Varkonyi-Koczy
|
2019-08-01
|
Scalable Bayesian Non-linear Matrix Completion
Xiangju Qin
•
Paul Blomstedt
•
Samuel Kaski
|
2019-07-31
|
Sequential Learning of Active Subspaces
Nathan Wycoff
•
Mickael Binois
•
Stefan M. Wild
|
2019-07-26
|
Bayesian Volumetric Autoregressive generative models for better semisupervised learning
|
Guilherme Pombo
•
Robert Gray
•
Tom Varsavsky
•
John Ashburner
•
Parashkev Nachev
|
2019-07-26
|
A Strategy for Adaptive Sampling of Multi-fidelity Gaussian Process to Reduce Predictive Uncertainty
Sayan Ghosh
•
Jesper Kristensen
•
Yiming Zhang
•
Waad Subber
•
Liping Wang
|
2019-07-26
|
Towards Scalable Gaussian Process Modeling
Piyush Pandita
•
Jesper Kristensen
•
Liping Wang
|
2019-07-25
|
Accelerating Experimental Design by Incorporating Experimenter Hunches
Cheng Li
•
Santu Rana
•
Sunil Gupta
•
Vu Nguyen
•
Svetha Venkatesh
•
Alessandra Sutti
•
David Rubin
•
Teo Slezak
•
Murray Height
•
Mazher Mohammed
•
Ian Gibson
|
2019-07-22
|
A Multiple Continuous Signal Alignment Algorithm with Gaussian Process Profiles and an Application to Paleoceanography
|
Taehee Lee
•
Lorraine E. Lisiecki
•
Devin Rand
•
Geoffrey Gebbie
•
Charles E. Lawrence
|
2019-07-20
|
Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs
Yusuke Tanaka
•
Toshiyuki Tanaka
•
Tomoharu Iwata
•
Takeshi Kurashima
•
Maya Okawa
•
Yasunori Akagi
•
Hiroyuki Toda
|
2019-07-19
|
Kernel Mode Decomposition and programmable/interpretable regression networks
|
Houman Owhadi
•
Clint Scovel
•
Gene Ryan Yoo
|
2019-07-19
|
Latent Function Decomposition for Forecasting Li-ion Battery Cells Capacity: A Multi-Output Convolved Gaussian Process Approach
Abdallah A. Chehade
•
Ala A. Hussein
|
2019-07-19
|
Structured Variational Inference in Unstable Gaussian Process State Space Models
|
Silvan Melchior
•
Sebastian Curi
•
Felix Berkenkamp
•
Andreas Krause
|
2019-07-16
|
Sequential online prediction in the presence of outliers and change points: an instant temporal structure learning approach
Bin Liu
•
Yu Qi
•
Ke-Jia Chen
|
2019-07-15
|
The Use of Gaussian Processes in System Identification
Simo Särkkä
|
2019-07-13
|
Performance Boundary Identification for the Evaluation of Automated Vehicles using Gaussian Process Classification
Felix Batsch
•
Alireza Daneshkhah
•
Madeline Cheah
•
Stratis Kanarachos
•
Anthony Baxendale
|
2019-07-11
|
Gaussian Processes for Analyzing Positioned Trajectories in Sports
Yuxin Zhao
•
Feng Yin
•
Fredrik Gunnarsson
•
Fredrik Hultkrantz
|
2019-07-05
|
Data-Centric Mixed-Variable Bayesian Optimization For Materials Design
Akshay Iyer
•
Yichi Zhang
•
Aditya Prasad
•
Siyu Tao
•
Yixing Wang
•
Linda Schadler
•
L Catherine Brinson
•
Wei Chen
|
2019-07-04
|
Unscented Gaussian Process Latent Variable Model: learning from uncertain inputs with intractable kernels
Daniel Augusto R. M. A. de Souza
•
César Lincoln C. Mattos
•
João Paulo P. Gomes
|
2019-07-03
|
Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches
Yuqing Zhang
•
Neil Walton
|
2019-07-02
|
Spatio-thermal depth correction of RGB-D sensors based on Gaussian Processes in real-time
|
Christoph Heindl
•
Thomas Pönitz
•
Gernot Stübl
•
Andreas Pichler
•
Josef Scharinger
|
2019-07-01
|
Predicting Humorousness and Metaphor Novelty with Gaussian Process Preference Learning
Edwin Simpson
•
Erik-L{\^a}n Do Dinh
•
Tristan Miller
•
Iryna Gurevych
|
2019-07-01
|
Multi-objective multi-generation Gaussian process optimizer for design optimization
Xiaobiao Huang
•
Minghao Song
•
Zhe Zhang
|
2019-06-29
|
Learning Fair Representations for Kernel Models
|
Zilong Tan
•
Samuel Yeom
•
Matt Fredrikson
•
Ameet Talwalkar
|
2019-06-27
|
Comparing Semi-Parametric Model Learning Algorithms for Dynamic Model Estimation in Robotics
|
Sebastian Riedel
•
Freek Stulp
|
2019-06-27
|
Modulating Surrogates for Bayesian Optimization
Erik Bodin
•
Markus Kaiser
•
Ieva Kazlauskaite
•
Zhenwen Dai
•
Neill D. F. Campbell
•
Carl Henrik Ek
|
2019-06-26
|
Modeling Multi-Vehicle Interaction Scenarios Using Gaussian Random Field
|
Yaohui Guo
•
Vinay Varma Kalidindi
•
Mansur Arief
•
Wenshuo Wang
•
Jiacheng Zhu
•
Huei Peng
•
Ding Zhao
|
2019-06-25
|
Compositionally-Warped Gaussian Processes
Gonzalo Rios
•
Felipe Tobar
|
2019-06-23
|
Sparse Spectrum Gaussian Process for Bayesian Optimization
Ang Yang
•
Cheng Li
•
Santu Rana
•
Sunil Gupta
•
Svetha Venkatesh
|
2019-06-21
|
Tomographic Reconstruction of Triaxial Strain Fields from Bragg-Edge Neutron Imaging
|
J. N. Hendriks
•
A. W. T. Gregg
•
R. R. Jackson
•
C. M. Wensrich
•
A. Wills
•
A. S. Tremsin
•
T. Shinohara
•
V. Luzin
•
O. Kirstein
|
2019-06-20
|
Bayesian Optimisation over Multiple Continuous and Categorical Inputs
|
Binxin Ru
•
Ahsan S. Alvi
•
Vu Nguyen
•
Michael A. Osborne
•
Stephen J Roberts
|
2019-06-20
|
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
|
Csaba Toth
•
Harald Oberhauser
|
2019-06-19
|
Bayesian inverse regression for dimension reduction with small datasets
Xin Cai
•
Guang Lin
•
Jinglai Li
|
2019-06-19
|
Multi-resolution Multi-task Gaussian Processes
|
Oliver Hamelijnck
•
Theodoros Damoulas
•
Kangrui Wang
•
Mark Girolami
|
2019-06-19
|
Bayesian Optimization with Binary Auxiliary Information
Yehong Zhang
•
Zhongxiang Dai
•
Kian Hsiang Low
|
2019-06-17
|
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
|
Alessandro Davide Ialongo
•
Mark van der Wilk
•
James Hensman
•
Carl Edward Rasmussen
|
2019-06-13
|
Robust Regression for Safe Exploration in Control
Anqi Liu
•
Guanya Shi
•
Soon-Jo Chung
•
Anima Anandkumar
•
Yisong Yue
|
2019-06-13
|
Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective
Omry Cohen
•
Or Malka
•
Zohar Ringel
|
2019-06-12
|
Towards Inverse Reinforcement Learning for Limit Order Book Dynamics
Jacobo Roa-Vicens
•
Cyrine Chtourou
•
Angelos Filos
•
Francisco Rullan
•
Yarin Gal
•
Ricardo Silva
|
2019-06-11
|
Errors-in-variables Modeling of Personalized Treatment-Response Trajectories
Guangyi Zhang
•
Reza Ashrafi
•
Anne Juuti
•
Kirsi Pietiläinen
•
Pekka Marttinen
|
2019-06-10
|
Region of Attraction for Power Systems using Gaussian Process and Converse Lyapunov Function -- Part I: Theoretical Framework and Off-line Study
|
Chao Zhai
•
Hung D. Nguyen
|
2019-06-09
|
A Variant of Gaussian Process Dynamical Systems
Jing Zhao
•
Jingjing Fei
•
Shiliang Sun
|
2019-06-09
|
Structured Variational Inference in Continuous Cox Process Models
|
Virginia Aglietti
•
Edwin V. Bonilla
•
Theodoros Damoulas
•
Sally Cripps
|
2019-06-07
|
A General $\mathcal{O}(n^2)$ Hyper-Parameter Optimization for Gaussian Process Regression with Cross-Validation and Non-linearly Constrained ADMM
Linning Xu
•
Feng Yin
•
Jiawei Zhang
•
Zhi-Quan Luo
•
Shuguang Cui
|
2019-06-06
|
Bayesian Optimization of Composite Functions
|
Raul Astudillo
•
Peter I. Frazier
|
2019-06-04
|
Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control
Armin Lederer
•
Jonas Umlauft
•
Sandra Hirche
|
2019-06-04
|
Robust Gaussian Process Regression for Real-Time High Precision GPS Signal Enhancement
Ming Lin
•
Xiaomin Song
•
Qi Qian
•
Hao Li
•
Liang Sun
•
Shenghuo Zhu
•
Rong Jin
|
2019-06-03
|
Resolving Overlapping Convex Objects in Silhouette Images by Concavity Analysis and Gaussian Process
Sahar Zafari
•
Mariia Murashkina
•
Tuomas Eerola
•
Jouni Sampo
•
Heikki Kälviäinen
•
Heikki Haario
|
2019-06-03
|
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel
|
Xin Qiu
•
Elliot Meyerson
•
Risto Miikkulainen
|
2019-06-03
|
Patient-Specific Effects of Medication Using Latent Force Models with Gaussian Processes
Li-Fang Cheng
•
Bianca Dumitrascu
•
Michael Zhang
•
Corey Chivers
•
Michael Draugelis
•
Kai Li
•
Barbara E. Engelhardt
|
2019-06-01
|
Neural Likelihoods for Multi-Output Gaussian Processes
Martin Jankowiak
•
Jacob Gardner
|
2019-05-31
|
Enriched Mixtures of Gaussian Process Experts
Charles W. L. Gadd
•
Sara Wade
•
Alexis Boukouvalas
|
2019-05-30
|
Efficient EM-Variational Inference for Hawkes Process
Feng Zhou
•
Zhidong Li
•
Xuhui Fan
•
Yang Wang
•
Arcot Sowmya
•
Fang Chen
|
2019-05-29
|
Adversarial Robustness Guarantees for Classification with Gaussian Processes
Arno Blaas
•
Andrea Patane
•
Luca Laurenti
•
Luca Cardelli
•
Marta Kwiatkowska
•
Stephen Roberts
|
2019-05-28
|
Recursive Estimation for Sparse Gaussian Process Regression
|
Manuel Schürch
•
Dario Azzimonti
•
Alessio Benavoli
•
Marco Zaffalon
|
2019-05-28
|
Scalable Training of Inference Networks for Gaussian-Process Models
|
Jiaxin Shi
•
Mohammad Emtiyaz Khan
•
Jun Zhu
|
2019-05-27
|
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation
|
Théo Galy-Fajou
•
Florian Wenzel
•
Christian Donner
•
Manfred Opper
|
2019-05-23
|
Learning spectrograms with convolutional spectral kernels
Zheyang Shen
•
Markus Heinonen
•
Samuel Kaski
|
2019-05-23
|
A Bulirsch-Stoer algorithm using Gaussian processes
Philip G. Breen
•
Christopher N. Foley
|
2019-05-23
|
Gaussian Process Learning via Fisher Scoring of Vecchia's Approximation
Joseph Guinness
|
2019-05-20
|
Practical Bayesian Optimization with Threshold-Guided Marginal Likelihood Maximization
Jungtaek Kim
•
Seungjin Choi
|
2019-05-18
|
Cosmic Inference: Constraining Parameters With Observations and Highly Limited Number of Simulations
Timur Takhtaganov
•
Zarija Lukic
•
Juliane Mueller
•
Dmitriy Morozov
|
2019-05-17
|
The Kernel Interaction Trick: Fast Bayesian Discovery of Pairwise Interactions in High Dimensions
Raj Agrawal
•
Jonathan H. Huggins
•
Brian Trippe
•
Tamara Broderick
|
2019-05-16
|
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
|
Tim Pearce
•
Russell Tsuchida
•
Mohamed Zaki
•
Alexandra Brintrup
•
Andy Neely
|
2019-05-15
|
Forecasting Wireless Demand with Extreme Values using Feature Embedding in Gaussian Processes
Chengyao Sun
•
Weisi Guo
|
2019-05-15
|
Online Anomaly Detection with Sparse Gaussian Processes
Jingjing Fei
•
Shiliang Sun
|
2019-05-14
|
Adaptive surrogate models for parametric studies
Jan N. Fuhg
|
2019-05-12
|
Building 3D Object Models during Manipulation by Reconstruction-Aware Trajectory Optimization
Kanrun Huang
•
Tucker Hermans
|
2019-05-10
|
Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models
|
Francisco Sahli Costabal
•
Paris Perdikaris
•
Ellen Kuhl
•
Daniel E. Hurtado
|
2019-05-09
|
Knowing The What But Not The Where in Bayesian Optimization
Vu Nguyen
•
Michael A. Osborne
|
2019-05-07
|
A deep learning approach for analyzing the composition of chemometric data
Muhammad Bilal
•
Mohib Ullah
|
2019-05-07
|
Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations
|
Marko Järvenpää
•
Michael Gutmann
•
Aki Vehtari
•
Pekka Marttinen
|
2019-05-03
|
Modular Deep Probabilistic Programming
|
Zhenwen Dai
•
Eric Meissner
•
Neil D. Lawrence
|
2019-05-01
|
A data-efficient geometrically inspired polynomial kernel for robot inverse dynamics
Alberto Dalla Libera
•
Ruggero Carli
|
2019-04-30
|
Efficient Computation of Expected Hypervolume Improvement Using Box Decomposition Algorithms
Kaifeng Yang
•
Michael Emmerich
•
André Deutz
•
Thomas Bäck
|
2019-04-26
|
A Bayesian Approach for the Robust Optimisation of Expensive-To-Evaluate Functions
Nicholas D. Sanders
•
Richard M. Everson
•
Jonathan E. Fieldsend
•
Alma A. M. Rahat
|
2019-04-25
|
Gaussian Process Regression and Classification under Mathematical Constraints with Learning Guarantees
Jeremiah Zhe Liu
|
2019-04-21
|
Meta-Weighted Gaussian Process Experts for Personalized Forecasting of AD Cognitive Changes
Ognjen Rudovic
•
Yuria Utsumi
•
Ricardo Guerrero
•
Kelly Peterson
•
Daniel Rueckert
•
Rosalind W. Picard
|
2019-04-19
|
A Bayesian Perspective on the Deep Image Prior
|
Zezhou Cheng
•
Matheus Gadelha
•
Subhransu Maji
•
Daniel Sheldon
|
2019-04-16
|
Multi-View Stereo by Temporal Nonparametric Fusion
|
Yuxin Hou
•
Juho Kannala
•
Arno Solin
|
2019-04-12
|
Scalarizing Functions in Bayesian Multiobjective Optimization
Tinkle Chugh
|
2019-04-11
|
Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms
Md. Maniruzzaman
•
Md. Jahanur Rahman
•
Benojir Ahammed
•
Md. Menhazul Abedin
•
Harman S. Suri
•
Mainak Biswas
•
Ayman El-Baz
•
Petros Bangeas
•
Georgios Tsoulfas
•
Jasjit S. Suri
|
2019-04-08
|
Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources
Edwin Simpson
•
Steven Reece
•
Stephen J. Roberts
|
2019-04-05
|
Intent-Aware Probabilistic Trajectory Estimation for Collision Prediction with Uncertainty Quantification
Andrew Patterson
•
Arun Lakshmanan
•
Naira Hovakimyan
|
2019-04-04
|
On-the-Fly Bayesian Active Learning of Interpretable Force-Fields for Atomistic Rare Events
Jonathan Vandermause
•
Steven B. Torrisi
•
Simon Batzner
•
Alexie M. Kolpak
•
Boris Kozinsky
|
2019-04-03
|
Sentiment analysis with genetically evolved Gaussian kernels
Ibai Roman
•
Alexander Mendiburu
•
Roberto Santana
•
Jose A. Lozano
|
2019-04-01
|
MCTS-based Automated Negotiation Agent (Extended Abstract)
Cédric Buron
•
Zahia Guessoum
•
Sylvain Ductor
|
2019-03-29
|
A Gaussian process latent force model for joint input-state estimation in linear structural systems
Rajdip Nayek
•
Souvik Chakraborty
•
Sriram Narasimhan
|
2019-03-29
|
Using Gaussian process regression for efficient parameter reconstruction
Philipp-Immanuel Schneider
•
Martin Hammerschmidt
•
Lin Zschiedrich
•
Sven Burger
|
2019-03-28
|
Pixelation is NOT Done in Videos Yet
Jizhe Zhou
•
Chi-Man Pun
•
YingYu Wang
|
2019-03-26
|
Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Nimish Awalgaonkar
•
Ilias Bilionis
•
Xiaoqi Liu
•
Panagiota Karava
•
Athanasios Tzempelikos
|
2019-03-21
|
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
•
Mark Pullin
•
Andreas Damianou
•
Neil Lawrence
•
Javier González
|
2019-03-18
|
Financial Applications of Gaussian Processes and Bayesian Optimization
Joan Gonzalvez
•
Edmond Lezmi
•
Thierry Roncalli
•
Jiali Xu
|
2019-03-12
|
Scalable Grouped Gaussian Processes via Direct Cholesky Functional Representations
Astrid Dahl
•
Edwin V. Bonilla
|
2019-03-10
|
Functional Principal Component Analysis for Extrapolating Multi-stream Longitudinal Data
Seokhyun Chung
•
Raed Kontar
|
2019-03-09
|
Rates of Convergence for Sparse Variational Gaussian Process Regression
|
David R. Burt
•
Carl E. Rasmussen
•
Mark van der Wilk
|
2019-03-08
|
Safety-Guided Deep Reinforcement Learning via Online Gaussian Process Estimation
Jiameng Fan
•
Wenchao Li
|
2019-03-06
|
A Bayesian Approach to Triaxial Strain Tomography from High-energy X-ray Diffraction
J. N. Hendriks
•
C. M. Wensrich
•
A. Wills
|
2019-03-06
|
Deep Learning and Gaussian Process based Band Assignment in Dual Band Systems
Daoud Burghal
•
Rui Wang
•
Andreas F. Molisch
|
2019-02-28
|
Estimating Local Function Complexity via Mixture of Gaussian Processes
Danny Panknin
•
Shinichi Nakajima
•
Thanh Binh Bui
•
Klaus-Robert Müller
|
2019-02-27
|
Active learning via informed search in movement parameter space for efficient robot task learning and transfer
|
Nemanja Rakicevic
•
Petar Kormushev
|
2019-02-21
|
Stable Bayesian Optimisation via Direct Stability Quantification
Alistair Shilton
•
Sunil Gupta
•
Santu Rana
•
Svetha Venkatesh
•
Majid Abdolshah
•
Dang Nguyen
|
2019-02-21
|
Bayesian optimisation under uncertain inputs
Rafael Oliveira
•
Lionel Ott
•
Fabio Ramos
|
2019-02-21
|
Gaussian Process Priors for Dynamic Paired Comparison Modelling
|
Martin Ingram
|
2019-02-20
|
Multifidelity Bayesian Optimization for Binomial Output
Leonid Matyushin
•
Alexey Zaytsev
•
Oleg Alenkin
•
Andrey Ustuzhanin
|
2019-02-19
|
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
•
Lechao Xiao
•
Samuel S. Schoenholz
•
Yasaman Bahri
•
Roman Novak
•
Jascha Sohl-Dickstein
•
Jeffrey Pennington
|
2019-02-18
|
The Kalai-Smorodinski solution for many-objective Bayesian optimization
Mickaël Binois
•
Victor Picheny
•
Patrick Taillandier
•
Abderrahmane Habbal
|
2019-02-18
|
Wireless Traffic Prediction with Scalable Gaussian Process: Framework, Algorithms, and Verification
Yue Xu
•
Feng Yin
•
Wenjun Xu
•
Jiaru Lin
•
Shuguang Cui
|
2019-02-13
|
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
|
2019-02-13
|
Learning interpretable continuous-time models of latent stochastic dynamical systems
Lea Duncker
•
Gergo Bohner
•
Julien Boussard
•
Maneesh Sahani
|
2019-02-12
|
Multi-objective Bayesian optimisation with preferences over objectives
Majid Abdolshah
•
Alistair Shilton
•
Santu Rana
•
Sunil Gupta
•
Svetha Venkatesh
|
2019-02-12
|
Harnessing Low-Fidelity Data to Accelerate Bayesian Optimization via Posterior Regularization
Bin Liu
|
2019-02-11
|
Early Recognition of Sepsis with Gaussian Process Temporal Convolutional Networks and Dynamic Time Warping
|
Michael Moor
•
Max Horn
•
Bastian Rieck
•
Damian Roqueiro
•
Karsten Borgwardt
|
2019-02-05
|
Combinatorial Bayesian Optimization using the Graph Cartesian Product
|
Changyong Oh
•
Jakub M. Tomczak
•
Efstratios Gavves
•
Max Welling
|
2019-02-01
|
Minimizing Negative Transfer of Knowledge in Multivariate Gaussian Processes: A Scalable and Regularized Approach
Raed Kontar
•
Garvesh Raskutti
•
Shiyu Zhou
|
2019-01-31
|
End-to-End Probabilistic Inference for Nonstationary Audio Analysis
|
William J. Wilkinson
•
Michael Riis Andersen
•
Joshua D. Reiss
•
Dan Stowell
•
Arno Solin
|
2019-01-31
|
Geometric fluid approximation for general continuous-time Markov chains
Michalis Michaelides
•
Jane Hillston
•
Guido Sanguinetti
|
2019-01-31
|
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
•
Jonathan Schwarz
•
Alexander G. de G. Matthews
•
Razvan Pascanu
•
Yee Whye Teh
|
2019-01-31
|
On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis
Kohei Hayashi
•
Masaaki Imaizumi
•
Yuichi Yoshida
|
2019-01-28
|
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
•
Heiko Strathmann
•
Gunnar Rätsch
|
2019-01-23
|
Active Learning with Gaussian Processes for High Throughput Phenotyping
|
Sumit Kumar
•
Wenhao Luo
•
George Kantor
•
Katia Sycara
|
2019-01-21
|
Modeling and inference of spatio-temporal protein dynamics across brain networks
Sara Garbarino
•
Marco Lorenzi
|
2019-01-18
|
Learning Temporal Evolution of Spatial Dependence with Generalized Spatiotemporal Gaussian Process Models
Shiwei Lan
|
2019-01-13
|
Gaussian processes with linear operator inequality constraints
Christian Agrell
|
2019-01-10
|
No-Regret Bayesian Optimization with Unknown Hyperparameters
Felix Berkenkamp
•
Angela P. Schoellig
•
Andreas Krause
|
2019-01-10
|
Adaptive Activity Monitoring with Uncertainty Quantification in Switching Gaussian Process Models
Randy Ardywibowo
•
Guang Zhao
•
Zhangyang Wang
•
Bobak Mortazavi
•
Shuai Huang
•
Xiaoning Qian
|
2019-01-08
|
Variational bridge constructs for approximate Gaussian process regression
Wil O C Ward
•
Mauricio A Álvarez
|
2019-01-07
|
Forecasting residential gas demand: machine learning approaches and seasonal role of temperature forecasts
Andrea Marziali
•
Emanuele Fabbiani
•
Giuseppe De Nicolao
|
2019-01-04
|
Approximate Inference for Multiplicative Latent Force Models
Daniel J. Tait
•
Bruce J. Worton
|
2018-12-31
|
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
|
Jamie Fairbrother
•
Christopher Nemeth
•
Maxime Rischard
•
Johanni Brea
•
Thomas Pinder
|
2018-12-21
|
ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation
|
Xiaoliang Dai
•
Peizhao Zhang
•
Bichen Wu
•
Hongxu Yin
•
Fei Sun
•
Yanghan Wang
•
Marat Dukhan
•
Yunqing Hu
•
Yiming Wu
•
Yangqing Jia
•
Peter Vajda
•
Matt Uyttendaele
•
Niraj K. Jha
|
2018-12-21
|
Towards an Evolvable Cancer Treatment Simulator
Richard J. Preen
•
Larry Bull
•
Andrew Adamatzky
|
2018-12-19
|
Linking Gaussian Process regression with data-driven manifold embeddings for nonlinear data fusion
Seungjoon Lee
•
Felix Dietrich
•
George E. Karniadakis
•
Ioannis G. Kevrekidis
|
2018-12-16
|
Efficient Model-Free Reinforcement Learning Using Gaussian Process
|
Ying Fan
•
Letian Chen
•
Yizhou Wang
|
2018-12-11
|
Bayesian emulator optimisation for cosmology: application to the Lyman-alpha forest
Keir K. Rogers
•
Hiranya V. Peiris
•
Andrew Pontzen
•
Simeon Bird
•
Licia Verde
•
Andreu Font-Ribera
|
2018-12-11
|
The Limitations of Model Uncertainty in Adversarial Settings
Kathrin Grosse
•
David Pfaff
•
Michael Thomas Smith
•
Michael Backes
|
2018-12-06
|
Safe Active Learning for Time-Series Modeling with Gaussian Processes
Christoph Zimmer
•
Mona Meister
•
Duy Nguyen-Tuong
|
2018-12-01
|
Learning a latent manifold of odor representations from neural responses in piriform cortex
Anqi Wu
•
Stan Pashkovski
•
Sandeep R. Datta
•
Jonathan W. Pillow
|
2018-12-01
|
A Bayes-Sard Cubature Method
Toni Karvonen
•
Chris J. Oates
•
Simo Sarkka
|
2018-12-01
|
Scalable Hyperparameter Transfer Learning
Valerio Perrone
•
Rodolphe Jenatton
•
Matthias W. Seeger
•
Cedric Archambeau
|
2018-12-01
|
Bayesian Control of Large MDPs with Unknown Dynamics in Data-Poor Environments
Mahdi Imani
•
Seyede Fatemeh Ghoreishi
•
Ulisses M. Braga-Neto
|
2018-12-01
|
Inferring Latent Velocities from Weather Radar Data using Gaussian Processes
Rico Angell
•
Daniel R. Sheldon
|
2018-12-01
|
Temporal alignment and latent Gaussian process factor inference in population spike trains
Lea Duncker
•
Maneesh Sahani
|
2018-12-01
|
Deep Factors with Gaussian Processes for Forecasting
Danielle C. Maddix
•
Yuyang Wang
•
Alex Smola
|
2018-11-30
|
Neural Non-Stationary Spectral Kernel
|
Sami Remes
•
Markus Heinonen
•
Samuel Kaski
|
2018-11-27
|
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
Thang D. Bui
•
Cuong V. Nguyen
•
Siddharth Swaroop
•
Richard E. Turner
|
2018-11-27
|
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence
Xiu Yang
•
David Barajas-Solano
•
Guzel Tartakovsky
•
Alexandre Tartakovsky
|
2018-11-24
|
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
|
Zi Wang
•
Beomjoon Kim
•
Leslie Pack Kaelbling
|
2018-11-23
|
Mixed Likelihood Gaussian Process Latent Variable Model
Samuel Murray
•
Hedvig Kjellström
|
2018-11-19
|
Recursive Sparse Pseudo-input Gaussian Process SARSA
John Martin
•
Brendan Englot
|
2018-11-17
|
Mean Square Prediction Error of Misspecified Gaussian Process Models
Thomas Beckers
•
Jonas Umlauft
•
Sandra Hirche
|
2018-11-16
|
Reachability-based safe learning for optimal control problem
Stanislav Fedorov
•
Antonio Candelieri
|
2018-11-09
|
Unifying Probabilistic Models for Time-Frequency Analysis
|
William J. Wilkinson
•
Michael Riis Andersen
•
Joshua D. Reiss
•
Dan Stowell
•
Arno Solin
|
2018-11-06
|
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
•
Yew-Soon Ong
•
Jianfei Cai
|
2018-11-03
|
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
•
Jianfei Cai
•
Yew-Soon Ong
•
Yi Wang
|
2018-11-03
|
Multiplicative Latent Force Models
Daniel J. Tait
•
Bruce J. Worton
|
2018-11-01
|
An Efficient Implementation of Riemannian Manifold Hamiltonian Monte Carlo for Gaussian Process Models
Ulrich Paquet
•
Marco Fraccaro
|
2018-10-28
|
Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction
William Herlands
•
Daniel B. Neill
•
Hannes Nickisch
•
Andrew Gordon Wilson
|
2018-10-28
|
Gaussian Process Prior Variational Autoencoders
|
Francesco Paolo Casale
•
Adrian V Dalca
•
Luca Saglietti
•
Jennifer Listgarten
•
Nicolo Fusi
|
2018-10-28
|
Adversarially Robust Optimization with Gaussian Processes
Ilija Bogunovic
•
Jonathan Scarlett
•
Stefanie Jegelka
•
Volkan Cevher
|
2018-10-25
|
Data Association with Gaussian Processes
Markus Kaiser
•
Clemens Otte
•
Thomas Runkler
•
Carl Henrik Ek
|
2018-10-16
|
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens
•
Kieran R. Campbell
•
Christopher Yau
|
2018-10-16
|
Hyperparameter Learning via Distributional Transfer
|
Ho Chung Leon Law
•
Peilin Zhao
•
Lucian Chan
•
Junzhou Huang
•
Dino Sejdinovic
|
2018-10-15
|
Non-linear process convolutions for multi-output Gaussian processes
Mauricio A. Álvarez
•
Wil O. C. Ward
•
Cristian Guarnizo
|
2018-10-10
|
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
Filip Tronarp
•
Hans Kersting
•
Simo Särkkä
•
Philipp Hennig
|
2018-10-08
|
Deep convolutional Gaussian processes
|
Kenneth Blomqvist
•
Samuel Kaski
•
Markus Heinonen
|
2018-10-06
|
GPdoemd: a Python package for design of experiments for model discrimination
|
Simon Olofsson
•
Lukas Hebing
•
Sebastian Niedenführ
•
Marc Peter Deisenroth
•
Ruth Misener
|
2018-10-05
|
Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
Juho Lee
•
Yoonho Lee
•
Jungtaek Kim
•
Adam R. Kosiorek
•
Seungjin Choi
•
Yee Whye Teh
|
2018-10-01
|
Adaptive Gaussian process surrogates for Bayesian inference
Timur Takhtaganov
•
Juliane Müller
|
2018-09-27
|
High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants
Vijay Varma
•
Davide Gerosa
•
François Hébert
•
Leo C. Stein
•
Hao Zhang
|
2018-09-24
|
Causal Inference and Mechanism Clustering of A Mixture of Additive Noise Models
|
Shoubo Hu
•
Zhitang Chen
•
Vahid Partovi Nia
•
Laiwan Chan
•
Yanhui Geng
|
2018-09-23
|
Refining Coarse-grained Spatial Data using Auxiliary Spatial Data Sets with Various Granularities
Yusuke Tanaka
•
Tomoharu Iwata
•
Toshiyuki Tanaka
•
Takeshi Kurashima
•
Maya Okawa
•
Hiroyuki Toda
|
2018-09-21
|
InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics
|
Young-Jin Park
•
Han-Lim Choi
|
2018-09-19
|
A Generalized Representer Theorem for Hilbert Space - Valued Functions
Sanket Diwale
•
Colin Jones
|
2018-09-19
|
Semiparametrical Gaussian Processes Learning of Forward Dynamical Models for Navigating in a Circular Maze
Diego Romeres
•
Devesh Jha
•
Alberto Dalla Libera
•
William Yerazunis
•
Daniel Nikovski
|
2018-09-13
|
Gaussian process classification using posterior linearisation
Ángel F. García-Fernández
•
Filip Tronarp
•
Simo Särkkä
|
2018-09-13
|
Gaussian Process Classification for Variable Fidelity Data
|
Nikita Klyuchnikov
•
Evgeny Burnaev
|
2018-09-13
|
Probabilistic approach to limited-data computed tomography reconstruction
Zenith Purisha
•
Carl Jidling
•
Niklas Wahlström
•
Simo Särkkä
•
Thomas B. Schön
|
2018-09-11
|
Physics-Informed Kriging: A Physics-Informed Gaussian Process Regression Method for Data-Model Convergence
Xiu Yang
•
Guzel Tartakovsky
•
Alexandre Tartakovsky
|
2018-09-10
|
Gaussian Process Regression for Binned Data
Michael Thomas Smith
•
Mauricio A Alvarez
•
Neil D Lawrence
|
2018-09-06
|
Bayesian Nonparametric Spectral Estimation
|
Felipe Tobar
|
2018-09-06
|
A Multi-layer Gaussian Process for Motor Symptom Estimation in People with Parkinson's Disease
Muriel Lang
•
Franz M. J. Pfister
•
Jakob Fröhner
•
Kian Abedinpour
•
Daniel Pichler
•
Urban Fietzek
•
Terry T. Um
•
Dana Kulić
•
Satoshi Endo
•
Sandra Hirche
|
2018-08-31
|
Ensemble Learning Applied to Classify GPS Trajectories of Birds into Male or Female
|
Dewan Fayzur
|
2018-08-26
|
Continuous time Gaussian process dynamical models in gene regulatory network inference
Atte Aalto
•
Lauri Viitasaari
•
Pauliina Ilmonen
•
Laurent Mombaerts
•
Jorge Goncalves
|
2018-08-24
|
Deep Convolutional Networks as shallow Gaussian Processes
|
Adrià Garriga-Alonso
•
Carl Edward Rasmussen
•
Laurence Aitchison
|
2018-08-16
|
Locally-adaptive Bayesian nonparametric inference for phylodynamics
James R. Faulkner
•
Andrew F. Magee
•
Beth Shapiro
•
Vladimir N. Minin
|
2018-08-13
|
Exploiting Structure for Fast Kernel Learning
|
Trefor W. Evans
•
Prasanth B. Nair
|
2018-08-09
|
Improving Temporal Interpolation of Head and Body Pose using Gaussian Process Regression in a Matrix Completion Setting
Stephanie Tan
•
Hayley Hung
|
2018-08-06
|
Machine Learning of Space-Fractional Differential Equations
Mamikon Gulian
•
Maziar Raissi
•
Paris Perdikaris
•
George Karniadakis
|
2018-08-02
|
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
•
Manfred Opper
|
2018-08-02
|
A Data-Efficient Approach to Precise and Controlled Pushing
Maria Bauza
•
Francois R. Hogan
•
Alberto Rodriguez
|
2018-07-26
|
Weak in the NEES?: Auto-tuning Kalman Filters with Bayesian Optimization
Zhaozhong Chen
•
Christoffer Heckman
•
Simon Julier
•
Nisar Ahmed
|
2018-07-23
|
EnsembleDAgger: A Bayesian Approach to Safe Imitation Learning
Kunal Menda
•
Katherine Driggs-Campbell
•
Mykel J. Kochenderfer
|
2018-07-22
|
Deep Learning for Epidemiological Predictions
Wu
•
Yuexin Yang
•
Yiming Nishiura
•
Hiroshi Saitoh
•
Masaya
|
2018-07-21
|
Evaluating Gaussian Process Metamodels and Sequential Designs for Noisy Level Set Estimation
Xiong Lyu
•
Mickael Binois
•
Michael Ludkovski
|
2018-07-18
|
Battery health prediction under generalized conditions using a Gaussian process transition model
Robert R. Richardson
•
Michael A. Osborne
•
David A. Howey
|
2018-07-17
|
Machine Learning of Energetic Material Properties
Brian C. Barnes
•
Daniel C. Elton
•
Zois Boukouvalas
•
DeCarlos E. Taylor
•
William D. Mattson
•
Mark D. Fuge
•
Peter W. Chung
|
2018-07-17
|
Spatio-Temporal Structured Sparse Regression with Hierarchical Gaussian Process Priors
Danil Kuzin
•
Olga Isupova
•
Lyudmila Mihaylova
|
2018-07-15
|
DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures
Andrew R. Lawrence
•
Carl Henrik Ek
•
Neill D. F. Campbell
|
2018-07-12
|
Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion
|
Steven Atkinson
•
Nicholas Zabaras
|
2018-07-11
|
An Empirical Approach For Probing the Definiteness of Kernels
Martin Zaefferer
•
Thomas Bartz-Beielstein
•
Günter Rudolph
|
2018-07-10
|
Ensemble Kalman Filtering for Online Gaussian Process Regression and Learning
Danil Kuzin
•
Le Yang
•
Olga Isupova
•
Lyudmila Mihaylova
|
2018-07-09
|
A Tutorial on Bayesian Optimization
|
Peter I. Frazier
|
2018-07-08
|
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
|