Alleviation of Temperature Variation Induced Accuracy Degradation in Ferroelectric FinFET Based Neural Network

3 Mar 2021  ·  Sourav De, Hoang-Hiep Le, Md. Aftab Baig, Yao-Jen Lee, Darsen D. Lu, Thomas Kämpfe ·

This paper reports the impacts of temperature variation on the inference accuracy of pre-trained all-ferroelectric FinFET deep neural networks, along with plausible design techniques to abate these impacts. We adopted a pre-trained artificial neural network (N.N.) with 96.4% inference accuracy on the MNIST dataset as the baseline. As an aftermath of temperature change, a compact model captured the conductance drift of a programmed cell over a wide range of gate biases. We observed a significant inference accuracy degradation in the analog neural network at 233 K for an N.N. trained at 300 K. Finally, we deployed binary neural networks with "read voltage" optimization to ensure immunity of N.N. to accuracy degradation under temperature variation, maintaining an inference accuracy of 96%. Keywords: Ferroelectric memories

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here