AAM-VDT: Vehicle Digital Twin for Tele-Operations in Advanced Air Mobility

This study advanced tele-operations in Advanced Air Mobility (AAM) through the creation of a Vehicle Digital Twin (VDT) system for eVTOL aircraft, tailored to enhance remote control safety and efficiency, especially for Beyond Visual Line of Sight (BVLOS) operations. By synergizing digital twin technology with immersive Virtual Reality (VR) interfaces, we notably elevate situational awareness and control precision for remote operators. Our VDT framework integrates immersive tele-operation with a high-fidelity aerodynamic database, essential for authentically simulating flight dynamics and control tactics. At the heart of our methodology lies an eVTOL's high-fidelity digital replica, placed within a simulated reality that accurately reflects physical laws, enabling operators to manage the aircraft via a master-slave dynamic, substantially outperforming traditional 2D interfaces. The architecture of the designed system ensures seamless interaction between the operator, the digital twin, and the actual aircraft, facilitating exact, instantaneous feedback. Experimental assessments, involving propulsion data gathering, simulation database fidelity verification, and tele-operation testing, verify the system's capability in precise control command transmission and maintaining the digital-physical eVTOL synchronization. Our findings underscore the VDT system's potential in augmenting AAM efficiency and safety, paving the way for broader digital twin application in autonomous aerial vehicles.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here