A Seascape Origin of Richards Growth

23 Aug 2021  ·  Daniel Swartz, Bertrand Ottino-Löffler, Mehran Kardar ·

First proposed as an empirical rule over half a century ago, the Richards growth equation has been frequently invoked in population modeling and pandemic forecasting. Central to this model is the advent of a fractional exponent $\gamma$, typically fitted to the data. While various motivations for this non-analytical form have been proposed, it is still considered foremost an empirical fitting procedure. Here, we find that Richards-like growth laws emerge naturally from generic analytical growth rules in a distributed population, upon inclusion of {\bf (i)} migration (spatial diffusion) amongst different locales, and {\bf (ii)} stochasticity in the growth rate, also known as "seascape noise." The latter leads to a wide (power-law) distribution in local population number that, while smoothened through the former, can still result in a fractional growth law for the overall population. This justification of the Richards growth law thus provides a testable connection to the distribution of constituents of the population.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here