Search Results for author: Ziwen Ke

Found 12 papers, 4 papers with code

Universal Generative Modeling in Dual-domain for Dynamic MR Imaging

no code implementations15 Dec 2022 Chuanming Yu, Yu Guan, Ziwen Ke, Dong Liang, Qiegen Liu

Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements.

Image Reconstruction

Equilibrated Zeroth-Order Unrolled Deep Networks for Accelerated MRI

no code implementations18 Dec 2021 Zhuo-Xu Cui, Jing Cheng, Qingyong Zhu, Yuanyuan Liu, Sen Jia, Kankan Zhao, Ziwen Ke, Wenqi Huang, Haifeng Wang, Yanjie Zhu, Dong Liang

Specifically, focusing on accelerated MRI, we unroll a zeroth-order algorithm, of which the network module represents the regularizer itself, so that the network output can be still covered by the regularization model.

MRI Reconstruction Rolling Shutter Correction

Deep Low-rank plus Sparse Network for Dynamic MR Imaging

1 code implementation26 Oct 2020 Wenqi Huang, Ziwen Ke, Zhuo-Xu Cui, Jing Cheng, Zhilang Qiu, Sen Jia, Leslie Ying, Yanjie Zhu, Dong Liang

However, the selection of the parameters of L+S is empirical, and the acceleration rate is limited, which are common failings of iterative compressed sensing MR imaging (CS-MRI) reconstruction methods.

MRI Reconstruction

An Unsupervised Deep Learning Method for Multi-coil Cine MRI

1 code implementation20 Dec 2019 Ziwen Ke, Jing Cheng, Leslie Ying, Hairong Zheng, Yanjie Zhu, Dong Liang

Although these deep learning methods can improve the reconstruction quality compared with iterative methods without requiring complex parameter selection or lengthy reconstruction time, the following issues still need to be addressed: 1) all these methods are based on big data and require a large amount of fully sampled MRI data, which is always difficult to obtain for cardiac MRI; 2) the effect of coil correlation on reconstruction in deep learning methods for dynamic MR imaging has never been studied.

MRI Reconstruction

LANTERN: learn analysis transform network for dynamic magnetic resonance imaging with small dataset

no code implementations24 Aug 2019 Shan-Shan Wang, Yanxia Chen, Taohui Xiao, Ziwen Ke, Qiegen Liu, Hairong Zheng

In comparison with state-of-the-art methods, extensive experiments show that our method achieves consistent better reconstruction performance on the MRI reconstruction in terms of three quantitative metrics (PSNR, SSIM and HFEN) under different undersamling patterns and acceleration factors.

MRI Reconstruction SSIM

Deep MRI Reconstruction: Unrolled Optimization Algorithms Meet Neural Networks

no code implementations26 Jul 2019 Dong Liang, Jing Cheng, Ziwen Ke, Leslie Ying

Image reconstruction from undersampled k-space data has been playing an important role for fast MRI.

MRI Reconstruction

DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution

1 code implementation11 Jun 2019 Shan-Shan Wang, Huitao Cheng, Leslie Ying, Taohui Xiao, Ziwen Ke, Xin Liu, Hairong Zheng, Dong Liang

This paper proposes a multi-channel image reconstruction method, named DeepcomplexMRI, to accelerate parallel MR imaging with residual complex convolutional neural network.

Image Reconstruction

CRDN: Cascaded Residual Dense Networks for Dynamic MR Imaging with Edge-enhanced Loss Constraint

no code implementations18 Jan 2019 Ziwen Ke, Shan-Shan Wang, Huitao Cheng, Leslie Ying, Qiegen Liu, Hairong Zheng, Dong Liang

In this work, we propose cascaded residual dense networks for dynamic MR imaging with edge-enhance loss constraint, dubbed as CRDN.

DIMENSION: Dynamic MR Imaging with Both K-space and Spatial Prior Knowledge Obtained via Multi-Supervised Network Training

no code implementations30 Sep 2018 Shan-Shan Wang, Ziwen Ke, Huitao Cheng, Sen Jia, Ying Leslie, Hairong Zheng, Dong Liang

Dynamic MR image reconstruction from incomplete k-space data has generated great research interest due to its capability in reducing scan time.

Image Reconstruction

Cannot find the paper you are looking for? You can Submit a new open access paper.