Search Results for author: Yangkun Wang

Found 11 papers, 4 papers with code

ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation

no code implementations26 Oct 2023 Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang, Yuxin Guo, Yujia Wang, Jingbo Shang

This benchmark contains the rich, nuanced phenomena that can be tricky for current toxicity detection models to identify, revealing a significant domain difference compared to social media content.

Chatbot

Towards Few-shot Entity Recognition in Document Images: A Graph Neural Network Approach Robust to Image Manipulation

no code implementations24 May 2023 Prashant Krishnan, Zilong Wang, Yangkun Wang, Jingbo Shang

Recent advances of incorporating layout information, typically bounding box coordinates, into pre-trained language models have achieved significant performance in entity recognition from document images.

Image Manipulation Language Modelling +1

Refined Edge Usage of Graph Neural Networks for Edge Prediction

no code implementations25 Dec 2022 Jiarui Jin, Yangkun Wang, Weinan Zhang, Quan Gan, Xiang Song, Yong Yu, Zheng Zhang, David Wipf

However, existing methods lack elaborate design regarding the distinctions between two tasks that have been frequently overlooked: (i) edges only constitute the topology in the node classification task but can be used as both the topology and the supervisions (i. e., labels) in the edge prediction task; (ii) the node classification makes prediction over each individual node, while the edge prediction is determinated by each pair of nodes.

Link Prediction Node Classification

Implicit vs Unfolded Graph Neural Networks

no code implementations12 Nov 2021 Yongyi Yang, Tang Liu, Yangkun Wang, Zengfeng Huang, David Wipf

It has been observed that graph neural networks (GNN) sometimes struggle to maintain a healthy balance between the efficient modeling long-range dependencies across nodes while avoiding unintended consequences such oversmoothed node representations or sensitivity to spurious edges.

Graph Attention Node Classification

Does your graph need a confidence boost? Convergent boosted smoothing on graphs with tabular node features

1 code implementation26 Oct 2021 Jiuhai Chen, Jonas Mueller, Vassilis N. Ioannidis, Soji Adeshina, Yangkun Wang, Tom Goldstein, David Wipf

For supervised learning with tabular data, decision tree ensembles produced via boosting techniques generally dominate real-world applications involving iid training/test sets.

Why Propagate Alone? Parallel Use of Labels and Features on Graphs

no code implementations ICLR 2022 Yangkun Wang, Jiarui Jin, Weinan Zhang, Yongyi Yang, Jiuhai Chen, Quan Gan, Yong Yu, Zheng Zhang, Zengfeng Huang, David Wipf

In this regard, it has recently been proposed to use a randomly-selected portion of the training labels as GNN inputs, concatenated with the original node features for making predictions on the remaining labels.

Node Property Prediction Property Prediction

Convergent Boosted Smoothing for Modeling GraphData with Tabular Node Features

no code implementations ICLR 2022 Jiuhai Chen, Jonas Mueller, Vassilis N. Ioannidis, Soji Adeshina, Yangkun Wang, Tom Goldstein, David Wipf

Many practical modeling tasks require making predictions using tabular data composed of heterogeneous feature types (e. g., text-based, categorical, continuous, etc.).

Inductive Relation Prediction Using Analogy Subgraph Embeddings

no code implementations ICLR 2022 Jiarui Jin, Yangkun Wang, Kounianhua Du, Weinan Zhang, Zheng Zhang, David Wipf, Yong Yu, Quan Gan

Prevailing methods for relation prediction in heterogeneous graphs aim at learning latent representations (i. e., embeddings) of observed nodes and relations, and thus are limited to the transductive setting where the relation types must be known during training.

Inductive Bias Inductive Relation Prediction +1

Bag of Tricks for Node Classification with Graph Neural Networks

2 code implementations24 Mar 2021 Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, David Wipf

Over the past few years, graph neural networks (GNN) and label propagation-based methods have made significant progress in addressing node classification tasks on graphs.

Classification General Classification +2

Graph Neural Networks Inspired by Classical Iterative Algorithms

1 code implementation10 Mar 2021 Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang, Zengfeng Huang, David Wipf

Despite the recent success of graph neural networks (GNN), common architectures often exhibit significant limitations, including sensitivity to oversmoothing, long-range dependencies, and spurious edges, e. g., as can occur as a result of graph heterophily or adversarial attacks.

Node Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.