Search Results for author: Evan Berkowitz

Found 8 papers, 8 papers with code

Two-nucleon S-wave interactions at the $SU(3)$ flavor-symmetric point with $m_{ud}\simeq m_s^{\rm phys}$: a first lattice QCD calculation with the stochastic Laplacian Heaviside method

1 code implementation24 Sep 2020 Ben Hörz, Dean Howarth, Enrico Rinaldi, Andrew Hanlon, Chia Cheng Chang, Christopher Körber, Evan Berkowitz, John Bulava, M. A. Clark, Wayne Tai Lee, Colin Morningstar, Amy Nicholson, Pavlos Vranas, André Walker-Loud

We report on the first application of the stochastic Laplacian Heaviside method for computing multi-particle interactions with lattice QCD to the two-nucleon system.

High Energy Physics - Lattice High Energy Physics - Phenomenology Nuclear Experiment Nuclear Theory

$F_K / F_π$ from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles

1 code implementation10 May 2020 Nolan Miller, Henry Monge-Camacho, Chia Cheng Chang, Ben Hörz, Enrico Rinaldi, Dean Howarth, Evan Berkowitz, David A. Brantley, Arjun Singh Gambhir, Christopher Körber, Christopher J. Monahan, M. A. Clark, Bálint Joó, Thorsten Kurth, Amy Nicholson, Kostas Orginos, Pavlos Vranas, André Walker-Loud

We report the results of a lattice quantum chromodynamics calculation of $F_K/F_\pi$ using M\"{o}bius domain-wall fermions computed on gradient-flowed $N_f=2+1+1$ highly-improved staggered quark (HISQ) ensembles.

High Energy Physics - Lattice High Energy Physics - Experiment High Energy Physics - Phenomenology Nuclear Theory

Renormalization of a Contact Interaction on a Lattice

1 code implementation10 Dec 2019 Christopher Körber, Evan Berkowitz, Thomas Luu

Contact interactions can be used to describe a system of particles at unitarity, contribute to the leading part of nuclear interactions and are numerically non-trivial because they require a proper regularization and renormalization scheme.

High Energy Physics - Lattice Nuclear Theory Computational Physics

Simulating the weak death of the neutron in a femtoscale universe with near-Exascale computing

1 code implementation3 Oct 2018 Evan Berkowitz, M. A. Clark, Arjun Gambhir, Ken McElvain, Amy Nicholson, Enrico Rinaldi, Pavlos Vranas, André Walker-Loud, Chia Cheng Chang, Bálint Joó, Thorsten Kurth, Kostas Orginos

The fundamental particle theory called Quantum Chromodynamics (QCD) dictates everything about protons and neutrons, from their intrinsic properties to interactions that bind them into atomic nuclei.

High Energy Physics - Lattice Distributed, Parallel, and Cluster Computing Nuclear Theory Computational Physics C.1.4; D.1.3

A percent-level determination of the nucleon axial coupling from Quantum Chromodynamics

2 code implementations30 May 2018 Chia Cheng Chang, Amy Nicholson, Enrico Rinaldi, Evan Berkowitz, Nicolas Garron, David A. Brantley, Henry Monge-Camacho, Christopher J. Monahan, Chris Bouchard, M. A. Clark, Bálint Joó, Thorsten Kurth, Kostas Orginos, Pavlos Vranas, André Walker-Loud

The $\textit{axial coupling of the nucleon}$, $g_A$, is the strength of its coupling to the $\textit{weak}$ axial current of the Standard Model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current.

High Energy Physics - Lattice High Energy Physics - Experiment High Energy Physics - Phenomenology Nuclear Experiment Nuclear Theory

METAQ: Bundle Supercomputing Tasks

1 code implementation20 Feb 2017 Evan Berkowitz

We describe a light-weight system of bash scripts for efficiently bundling supercomputing tasks into large jobs, so that one can take advantage of incentives or discounts for requesting large allocations.

Computational Physics High Energy Physics - Lattice

Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles

2 code implementations26 Jan 2017 Evan Berkowitz, Chris Bouchard, Chia Cheng Chang, M. A. Clark, Balint Joo, Thorsten Kurth, Christopher Monahan, Amy Nicholson, Kostas Orginos, Enrico Rinaldi, Pavlos Vranas, Andre Walker-Loud

We report on salient features of a mixed lattice QCD action using valence M\"{o}bius domain-wall fermions solved on the dynamical $N_f=2+1+1$ HISQ ensembles generated by the MILC Collaboration.

High Energy Physics - Lattice High Energy Physics - Phenomenology Nuclear Theory

Cannot find the paper you are looking for? You can Submit a new open access paper.