Search Results for author: Elias B. Issa

Found 5 papers, 4 papers with code

Brain-like Flexible Visual Inference by Harnessing Feedback-Feedforward Alignment

1 code implementation31 Oct 2023 Tahereh Toosi, Elias B. Issa

Our study presents FFA as a promising proof-of-concept for the mechanisms underlying how feedback connections in the visual cortex support flexible visual functions.

Denoising Hallucination

Brain-like representational straightening of natural movies in robust feedforward neural networks

1 code implementation26 Aug 2023 Tahereh Toosi, Elias B. Issa

Prior work established straightening in neural representations of the primate primary visual cortex (V1) and perceptual straightening in human behavior as a hallmark of biological vision in contrast to artificial feedforward neural networks which did not demonstrate this phenomenon as they were not explicitly optimized to produce temporally predictable movie representations.

Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?

1 code implementation2 Jan 2020 Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel L. K. Yamins, James J. DiCarlo

We therefore developed Brain-Score – a composite of multiple neural and behavioral benchmarks that score any ANN on how similar it is to the brain’s mechanisms for core object recognition – and we deployed it to evaluate a wide range of state-of-the-art deep ANNs.

Object Recognition

Aligning Artificial Neural Networks to the Brain yields Shallow Recurrent Architectures

no code implementations ICLR 2019 Jonas Kubilius, Martin Schrimpf, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Kailyn Schmidt, Aran Nayebi, Daniel Bear, Daniel L. K. Yamins, James J. DiCarlo

Deep artificial neural networks with spatially repeated processing (a. k. a., deep convolutional ANNs) have been established as the best class of candidate models of visual processing in the primate ventral visual processing stream.

Anatomy Object Categorization

Cannot find the paper you are looking for? You can Submit a new open access paper.