The goal of automatic Video Description is to tell a story about events happening in a video. While early Video Description methods produced captions for short clips that were manually segmented to contain a single event of interest, more recently dense video captioning has been proposed to both segment distinct events in time and describe them in a series of coherent sentences. This problem is a generalization of dense image region captioning and has many practical applications, such as generating textual summaries for the visually impaired, or detecting and describing important events in surveillance footage.
Source: Joint Event Detection and Description in Continuous Video Streams
This auxiliary task allows us to propose a two-stage approach to Identity-Aware Video Description.
With the arising concerns for the AI systems provided with direct access to abundant sensitive information, researchers seek to develop more reliable AI with implicit information sources.
Video captioning is an advanced multi-modal task which aims to describe a video clip using a natural language sentence.
Automatic evaluation of text generation tasks (e. g. machine translation, text summarization, image captioning and video description) usually relies heavily on task-specific metrics, such as BLEU and ROUGE.
IMAGE CAPTIONING MACHINE TRANSLATION TEXT GENERATION TEXT SUMMARIZATION VIDEO DESCRIPTION
We also introduce two tasks for video-and-language research based on VATEX: (1) Multilingual Video Captioning, aimed at describing a video in various languages with a compact unified captioning model, and (2) Video-guided Machine Translation, to translate a source language description into the target language using the video information as additional spatiotemporal context.
Our dataset, ActivityNet-Entities, augments the challenging ActivityNet Captions dataset with 158k bounding box annotations, each grounding a noun phrase.
Among the main issues are the fluency and coherence of the generated descriptions, and their relevance to the video.
We introduce a new dataset of dialogs about videos of human behaviors.
QUESTION ANSWERING VIDEO DESCRIPTION VISUAL QUESTION ANSWERING
Scene-aware dialog systems will be able to have conversations with users about the objects and events around them.
This paper strives to find amidst a set of sentences the one best describing the content of a given image or video.