We propose to improve the representation in sequence models by augmenting current approaches with an autoencoder that is forced to compress the sequence through an intermediate discrete latent space.
HIERARCHICAL STRUCTURE LANGUAGE MODELLING MACHINE TRANSLATION
Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning.
Ranked #1 on
Continuous Control
on Cart-Pole Balancing
Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs.
Ranked #1 on
Lexical Entailment
on HyperLex
In other words, our operators form the building blocks of a new deep motion processing framework that embeds the motion into a common latent space, shared by a collection of homeomorphic skeletons.
HIERARCHICAL STRUCTURE MOTION CAPTURE MOTION RETARGETING MOTION SYNTHESIS
In this paper we propose a novel model for unconditional audio generation based on generating one audio sample at a time.
To address this paradigm, we propose novel extensions of Prototypical Networks (Snell et al., 2017) that are augmented with the ability to use unlabeled examples when producing prototypes.
In this paper, we propose EFANNA, an extremely fast approximate nearest neighbor search algorithm based on $k$NN Graph.
We test HDNO on MultiWoz 2. 0 and MultiWoz 2. 1, the datasets on multi-domain dialogues, in comparison with word-level E2E model trained with RL, LaRL and HDSA, showing improvements on the performance evaluated by automatic evaluation metrics and human evaluation.
HIERARCHICAL REINFORCEMENT LEARNING HIERARCHICAL STRUCTURE TASK-ORIENTED DIALOGUE SYSTEMS
Learning good representations without supervision is still an open issue in machine learning, and is particularly challenging for speech signals, which are often characterized by long sequences with a complex hierarchical structure.
Ranked #2 on
Distant Speech Recognition
on DIRHA English WSJ
This paper investigates the task of 2D human whole-body pose estimation, which aims to localize dense landmarks on the entire human body including face, hands, body, and feet.
FACIAL LANDMARK DETECTION HAND POSE ESTIMATION HIERARCHICAL STRUCTURE