Color Constancy is the ability of the human vision system to perceive the colors of the objects in the scene largely invariant to the color of the light source. The task of computational Color Constancy is to estimate the scene illumination and then perform the chromatic adaptation in order to remove the influence of the illumination color on the colors of the objects in the scene.
We present Fast Fourier Color Constancy (FFCC), a color constancy algorithm which solves illuminant estimation by reducing it to a spatial localization task on a torus.
However, the patch-based CNNs that exist for this problem are faced with the issue of estimation ambiguity, where a patch may contain insufficient information to establish a unique or even a limited possible range of illumination colors.
The challenge lies not in identifying what the correct white balance should have been, but in the fact that the in-camera white-balance procedure is followed by several camera-specific nonlinear color manipulations that make it challenging to correct the image's colors in post-processing.
There is active research targeting local image manipulations that can fool deep neural networks (DNNs) into producing incorrect results.
COLOR CONSTANCY IMAGE AUGMENTATION IMAGE MANIPULATION SEMANTIC SEGMENTATION
Firstly, we select a set of candidate scene illuminants in a data-driven fashion and apply them to a target image to generate of set of corrected images.
Non-uniform and multi-illuminant color constancy are important tasks, the solution of which will allow to discard information about lighting conditions in the image.
Regressing the illumination of a scene from the representations of object appearances is popularly adopted in computational color constancy.
In this study, a novel illuminant color estimation framework is proposed for computational color constancy, which incorporates the high representational capacity of deep-learning-based models and the great interpretability of assumption-based models.
The goal of computational color constancy is to preserve the perceptive colors of objects under different lighting conditions by removing the effect of color casts caused by the scene's illumination.
In this paper, a new illumination estimation dataset is proposed that aims to alleviate many of the mentioned problems and to help the illumination estimation research.