We demonstrate the effectiveness of our approach by using it to predict a method's name from the vector representation of its body.

Pyro is a probabilistic programming language built on Python as a platform for developing advanced probabilistic models in AI research.

In the past several years, the field of machine learning has seen an explosion of interest and excitement, with hundreds or thousands of algorithms developed for different tasks every year.

This paper presents OptNet, a network architecture that integrates optimization problems (here, specifically in the form of quadratic programs) as individual layers in larger end-to-end trainable deep networks.

We propose a method to learn deep ReLU-based classifiers that are provably robust against norm-bounded adversarial perturbations on the training data.

In this paper, we present DeepDSL, a domain specific language (DSL) embedded in Scala, that compiles deep networks written in DeepDSL to Java source code.

We develop a first line of attack for solving programming competition-style problems from input-output examples using deep learning.

A common use case for BO in machine learning is model selection, where it is not possible to analytically model the generalisation performance of a statistical model, and we resort to noisy and expensive training and validation procedures to choose the best model.

BAYESIAN OPTIMISATION MODEL SELECTION NEURAL ARCHITECTURE SEARCH

Proof assistants offer a formalism that resembles human mathematical reasoning, representing theorems in higher-order logic and proofs as high-level tactics.

SOTA for Automated Theorem Proving on CoqGym

When building large-scale machine learning (ML) programs, such as big topic models or deep neural nets, one usually assumes such tasks can only be attempted with industrial-sized clusters with thousands of nodes, which are out of reach for most practitioners or academic researchers.