Zero-Shot Machine Unlearning

14 Jan 2022  ·  Vikram S Chundawat, Ayush K Tarun, Murari Mandal, Mohan Kankanhalli ·

Modern privacy regulations grant citizens the right to be forgotten by products, services and companies. In case of machine learning (ML) applications, this necessitates deletion of data not only from storage archives but also from ML models. Due to an increasing need for regulatory compliance required for ML applications, machine unlearning is becoming an emerging research problem. The right to be forgotten requests come in the form of removal of a certain set or class of data from the already trained ML model. Practical considerations preclude retraining of the model from scratch after discarding the deleted data. The few existing studies use either the whole training data, or a subset of training data, or some metadata stored during training to update the model weights for unlearning. However, in many cases, no data related to the training process or training samples may be accessible for the unlearning purpose. We therefore ask the question: is it possible to achieve unlearning with zero training samples? In this paper, we introduce the novel problem of zero-shot machine unlearning that caters for the extreme but practical scenario where zero original data samples are available for use. We then propose two novel solutions for zero-shot machine unlearning based on (a) error minimizing-maximizing noise and (b) gated knowledge transfer. These methods remove the information of the forget data from the model while maintaining the model efficacy on the retain data. The zero-shot approach offers good protection against the model inversion attacks and membership inference attacks. We introduce a new evaluation metric, Anamnesis Index (AIN) to effectively measure the quality of the unlearning method. The experiments show promising results for unlearning in deep learning models on benchmark vision data-sets. The source code is available here: https://github.com/ayu987/zero-shot-unlearning

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here