You say Normalizing Flows I see Bayesian Networks

1 Jun 2020  ·  Antoine Wehenkel, Gilles Louppe ·

Normalizing flows have emerged as an important family of deep neural networks for modelling complex probability distributions. In this note, we revisit their coupling and autoregressive transformation layers as probabilistic graphical models and show that they reduce to Bayesian networks with a pre-defined topology and a learnable density at each node. From this new perspective, we provide three results. First, we show that stacking multiple transformations in a normalizing flow relaxes independence assumptions and entangles the model distribution. Second, we show that a fundamental leap of capacity emerges when the depth of affine flows exceeds 3 transformation layers. Third, we prove the non-universality of the affine normalizing flow, regardless of its depth.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here