You Can Mask More For Extremely Low-Bitrate Image Compression

27 Jun 2023  ·  Anqi Li, Feng Li, Jiaxin Han, Huihui Bai, Runmin Cong, Chunjie Zhang, Meng Wang, Weisi Lin, Yao Zhao ·

Learned image compression (LIC) methods have experienced significant progress during recent years. However, these methods are primarily dedicated to optimizing the rate-distortion (R-D) performance at medium and high bitrates (> 0.1 bits per pixel (bpp)), while research on extremely low bitrates is limited. Besides, existing methods fail to explicitly explore the image structure and texture components crucial for image compression, treating them equally alongside uninformative components in networks. This can cause severe perceptual quality degradation, especially under low-bitrate scenarios. In this work, inspired by the success of pre-trained masked autoencoders (MAE) in many downstream tasks, we propose to rethink its mask sampling strategy from structure and texture perspectives for high redundancy reduction and discriminative feature representation, further unleashing the potential of LIC methods. Therefore, we present a dual-adaptive masking approach (DA-Mask) that samples visible patches based on the structure and texture distributions of original images. We combine DA-Mask and pre-trained MAE in masked image modeling (MIM) as an initial compressor that abstracts informative semantic context and texture representations. Such a pipeline can well cooperate with LIC networks to achieve further secondary compression while preserving promising reconstruction quality. Consequently, we propose a simple yet effective masked compression model (MCM), the first framework that unifies MIM and LIC end-to-end for extremely low-bitrate image compression. Extensive experiments have demonstrated that our approach outperforms recent state-of-the-art methods in R-D performance, visual quality, and downstream applications, at very low bitrates. Our code is available at https://github.com/lianqi1008/MCM.git.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


fail MAE MIM