YOLOV: Making Still Image Object Detectors Great at Video Object Detection

20 Aug 2022  ·  Yuheng Shi, Naiyan Wang, Xiaojie Guo ·

Video object detection (VID) is challenging because of the high variation of object appearance as well as the diverse deterioration in some frames. On the positive side, the detection in a certain frame of a video, compared with that in a still image, can draw support from other frames. Hence, how to aggregate features across different frames is pivotal to VID problem. Most of existing aggregation algorithms are customized for two-stage detectors. However, these detectors are usually computationally expensive due to their two-stage nature. This work proposes a simple yet effective strategy to address the above concerns, which costs marginal overheads with significant gains in accuracy. Concretely, different from traditional two-stage pipeline, we select important regions after the one-stage detection to avoid processing massive low-quality candidates. Besides, we evaluate the relationship between a target frame and reference frames to guide the aggregation. We conduct extensive experiments and ablation studies to verify the efficacy of our design, and reveal its superiority over other state-of-the-art VID approaches in both effectiveness and efficiency. Our YOLOX-based model can achieve promising performance (\emph{e.g.}, 87.5\% AP50 at over 30 FPS on the ImageNet VID dataset on a single 2080Ti GPU), making it attractive for large-scale or real-time applications. The implementation is simple, we have made the demo codes and models available at \url{https://github.com/YuHengsss/YOLOV}.

PDF Abstract

Datasets


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Video Object Detection ImageNet VID YOLOV MAP 87.5 # 7

Methods


No methods listed for this paper. Add relevant methods here